CS-112: Introduction to Computer Graphics Midterm - Winter 2020
 02/11/2020

Total Time: 120 min
Total Points: 120

Name:

Pledge: I neither received nor gave any help from or to anyone in this exam.

Signature:

Useful Tips

1. All questions are multiple choice questions --- please indicate your answers very clearly. Please circle your choice clearly.
2. Some questions have more than one answer. Full credit is given for marking all the correct answers.
3. Use the blank pages as your worksheet. Put the question number when working out the steps in the worksheet. Also, do your work clearly. This will help us give partial credit.
4. If you need more work sheets, feel free to ask for extra sheets.
5. Staple all your worksheets together with the paper at the end of the exam. If pages of your exam are missing since you took them apart, we are not responsible for putting them together.
6. The number of minutes you should spend on each question is roughly equal to the number of points assigned to the question.
1) $[\mathbf{2 + 3 + 3 + 2 = 1 0]}$ Consider a $2 D$ rectangle $\mathbf{A B C D}$ where $A=(0,0), B=(2,0)$, $C=(2,1)$ and $D=(0,1)$. We want to apply a 2D transformation to this rectangle which makes it a parallelepiped $\mathbf{A B E F}$ where $\mathrm{E}=(3,1)$ and $\mathrm{F}=(1,1)$.
a. What kind of transformation is this?
i. Scale
ii. Rotate
iii. Shear
iv. Translate
b. The 3×3 matrix \boldsymbol{M} achieving this transformation is given by
i. $[110 ; 010 ; 001]$
ii. [100; 110; 001 1]
iii. $\left[\begin{array}{lllllllll}1 & 0 & 1 ; & 0 & 1 & 0\end{array} ; 001\right]$
iv. $[100 ; 010 ; 101]$
c. What additional transformation \boldsymbol{N} we would need to apply to ABEF to get the parallelepiped $A^{\prime} B^{\prime} E^{\prime} F^{\prime}$, where $A^{\prime}=(2,1), B^{\prime}=(4,1), E^{\prime}=(5,2)$, and $\mathrm{F}^{\prime}=(3,2)$?
i. Rotation by 45°
ii. Scale by $(2,1)$
iii. Translate by $(2,1)$
d. What is the final concatenated matrix in terms of \boldsymbol{M} and \boldsymbol{N} that will transform ABCD to $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{E}^{\prime} \mathbf{F}^{\prime}$?
i. $M N$
ii. NM
iii. $M^{-1} N$
iv. $N^{-1} M$

Student ID:

2) $[3+2=5]$ Consider the following matrix (Note: $1 / \sqrt{ } 2=0.707$).

$$
\left[\begin{array}{cccc}
0.707 & 0.707 & 0 & 0 \\
-0.707 & 0.707 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

a. This matrix achieves the following in the global coordinate system:
i. $\boldsymbol{R}_{\boldsymbol{z}}$ of 45° followed by $\boldsymbol{S}_{\boldsymbol{z}}$ of 2
ii. $\boldsymbol{R}_{\boldsymbol{y}}$ of 45° following by $\boldsymbol{S}_{\boldsymbol{z}}$ of 2
iii. $\boldsymbol{S}_{\boldsymbol{z}}$ of 2 followed by $\boldsymbol{R}_{\boldsymbol{z}}$ of 45°
iv. $\boldsymbol{S}_{\boldsymbol{z}}$ of 2 followed by $\boldsymbol{R}_{\boldsymbol{y}}$ of 45°
b. Consider a translation \boldsymbol{T} of the local coordinate system following these transformations. The resultant transformation will be:
i. $R_{y} S_{y} T$
ii. $T R_{y} S_{y}$
iii. $T S_{y} R_{y}$
iv. $S_{y} R_{y} T$
\square
3) $[\mathbf{1 + 1 + 2 + 3 + 4 + 4 = 1 5]}$ Consider the point P and the three different coordinate axes, A, B and C .

a. What is the coordinate of P in coordinate system A ?
i. $(2,1)$
ii. $(1,2)$
iii. $(0,-2)$
iv. $(-2,0)$
v. $(-\sqrt{ } 2,3 \sqrt{ } 2)$
vi. $(3 \sqrt{ } 2,-\sqrt{ } 2)$
b. What is the coordinate of P in coordinate system B ?
i. $(2,1)$
ii. $(1,2)$
iii. $(0,-2)$
iv. $(-2,0)$
v. $(-\sqrt{ } 2,3 \sqrt{ } 2)$
vi. $(3 \sqrt{ } 2,-\sqrt{ } 2)$
c. What is the coordinate of P in coordinate system C ?
i. $(2,1)$
ii. $(1,2)$
iii. ($0,-2$)
iv. $(-2,0)$
v. $(-\sqrt{ } 2,3 \sqrt{ } 2)$
vi. $(3 \sqrt{ } 2,-\sqrt{ } 2)$
d. The 3×3 matrix to convert from homogeneous coordinates in coordinate system A to those in coordinate system B is given by
i. $[100 ; 010 ; 141]$
ii. [101; $014 ; 001]$
iii. [10 $00 ; 010 ;-1-41]$
iv. $[10-1 ; 01-4 ; 001]$
e. The 3×3 matrix to convert from homogeneous coordinates in coordinate system C to those in coordinate system A is given by

ii. $[1 / \sqrt{ } 21 / \sqrt{ } 2 \quad-5 / \sqrt{ } 2 ;-1 / \sqrt{ } 21 / \sqrt{ } 2 \quad 5 / \sqrt{ } 2 ; 00001]$

v. $\left[\begin{array}{lllllll}1 / \sqrt{ } 2 & 1 / \sqrt{ } 2 & 0 & ;-1 / \sqrt{ } 2 & 1 / \sqrt{ } 2 & 0 ;-5 / \sqrt{ } 2 & 5 / \sqrt{ } 2 \\ 1\end{array}\right]$
f. The 3×3 matrix to convert from homogeneous coordinates in coordinate system A to those in coordinate system C is given by
i. $[1 / \sqrt{ } 2-1 / \sqrt{ } 2 \quad 5 ; 1 / \sqrt{ } 21 / \sqrt{ } 2 \quad 0 \quad ; \quad 0 \quad 0 \quad 1]$
ii. [1/ $1 / \sqrt{ } 21 / \sqrt{ } 2 \quad-5 / \sqrt{ } 2 ;-1 / \sqrt{ } 21 / \sqrt{ } 2 \quad 5 / \sqrt{ } 2 ; \quad 0 \quad 0 \quad 1]$
iii. $[1 / \sqrt{ } 21 / \sqrt{ } 205 ;-1 / \sqrt{ } 21 / \sqrt{ } 2 \quad 0 \quad ; \quad 0 \quad 0 \quad 1]$
iv. $\left[\begin{array}{lllllllll}1 / \sqrt{ } 2 & -1 / \sqrt{ } 2 & 0 & ; 1 / \sqrt{ } 2 & 1 / \sqrt{ } 2 & 0 & 5 & 0 & 1\end{array}\right]$
v. $\left[\begin{array}{llllllll}1 / \sqrt{ } 2 & 1 / \sqrt{ } 2 & 0 & ;-1 / \sqrt{ } 2 & 1 / \sqrt{ } 2 & 0 & ;-5 / \sqrt{ } 2 & 5 / \sqrt{ } 2\end{array} 1\right]$

Student ID:

4) $[\mathbf{2 + 2 + 3 + 2 + 1 = 1 0}]$ Consider the following view setup. The eye is located at $(0,0,0)$ and the equation of the image plane is given by $2 x+2 y+2 z=6$.
a. What is the distance of the near plane n ?
i. 12
ii. $\sqrt{ } 12$
iii. $\sqrt{ } 3$
iv. 3
b. What is the normal to the image plane N ?
i. $(1,1,0)$
ii. $(1,1,1)$
iii. ($0,1,0$)
iv. $(1,0,1)$
c. If the vertical and horizontal field-of-view are 60 and 120 degrees respectively, what is the aspect ratio (ratio of width is to height) of the rendering window?
i. $\sqrt{ } 3: 1$
ii. $\sqrt{ } 2: 1$
iii. $3 \sqrt{ } 3: 1$
iv. $3: 1$
d. The view transformation consists of which of the following transformations.
i. Translation
ii. Scaling
iii. Rotation
iv. Shear
e. What is the third parameter (other than eye and normal) on which the view transformation depends?
i. View Direction
ii. View Up Vector
iii. Near and far plane
iv. Gaze Direction
5) $[3+2+2=7]$ Consider the default OpenGL view with the near plane (or image plane) at a distance 3 . The gaze direction is $(2,6)$ and the size of the window in X and Y direction in which it is centered are 12 and 10 respectively.
a. The $\mathrm{I}, \mathrm{r}, \mathrm{t}$, and b of the view frustum is given by:
i. $-4,8,11,1$
ii. $-5,5,-6,6$
iii. $0,12,0,10$
iv. $-2,6,-4,6$
b. The transformation required to make this window make the gaze direction coincident with the default OpenGL view direction is:
i. Scaling along X and Y axes
ii. Translate in X and Y direction
iii. Z-Shear
iv. X and Y Shear
v. Rotation about the Z axis
c. Once the view and gaze directions coincide, the transformation required normalize the X and Y coordinates are given by:
i. Scaling along X and Y axes
ii. Translate in X and Y direction
iii. Z-Shear
iv. X and Y Shear
v. Rotation about the Z axis
\square
6) $[\mathbf{4 + 4 + 3 + 2 + 2 + 3 = 1 8}]$ Consider a gray world with no ambient and specular lighting (only diffuse lighting). The screen coordinates of a triangle $\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}$ are $P_{1}=(100,100), P_{2}=(300,150), P_{3}=(200,200)$. The gray values at P_{1}, P_{2} and P_{3} are $1 / 2,3 / 4$, and $1 / 4$ respectively. Light is at infinity and its direction and gray color are $(1,1,1)$ and 1.0 respectively. The coefficient of diffuse reflection is $1 / 2$. The normals at P_{1}, P_{2} and P_{3}, are $N_{1}=(0,0,1), N_{2}=(1,0,0)$ and $N_{3}=(0,1,0)$ respectively. (Note: Assume the z coordinates of the three points P_{1}, P_{2}, and P_{3} to be 0). No need to normalize the normal).
a. The illumination at the three vertices $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}, are given by:
i. $(1 / 2,3 / 4,1 / 4)$
ii. $(1 / 4,3 / 8,1 / 8)$
iii. $(1 / 2,1 / 2,1 / 2)$
b. The interpolation coefficients of a point P inside the triangle whose coordinates are $(220,160)$ are given by:
i. $(2 / 5,1 / 5,2 / 5)$
ii. $(1 / 4,3 / 8,3 / 8)$
iii. $(1 / 5,2 / 5,2 / 5)$
iv. $(1 / 4,1 / 2,1 / 4)$
c. The illumination at P using Gouraud Shading is:
i. $15 / 32$
ii. $1 / 4$
iii. $9 / 40$
iv. $1 / 2$
d. The interpolated normal at P is given by:
i. $(2 / 5,2 / 5,1 / 5)$
ii. $(1 / 5,2 / 5,2 / 5)$
iii. $(1 / 2,1 / 4,1 / 4)$
iv. $(3 / 5,1 / 5,1 / 5)$
e. The interpolated color at P is given by:
i. $1 / 5$
ii. $1 / 2$
iii. $1 / 4$
iv. $3 / 8$
f. The illumination at P using Phong Shading is:
i. $15 / 32$
ii. $1 / 4$
iii. 9/40
iv. $1 / 2$
7) $[\mathbf{4 + 3 + 4 + 3}=\mathbf{1 4}]$ In the following image, the light source and the eye are denoted by L and E respectively. On surface $A C$ the normals at A and C are $N_{A}=(-1,1,0)$ and $N_{C}=(1,1,0)$ respectively. Everything is drawn to scale. Use the illumination model given by $\boldsymbol{I}=\boldsymbol{I}_{\mathbf{a}} \boldsymbol{k}_{\boldsymbol{a}}+\boldsymbol{I}_{\boldsymbol{L}} \boldsymbol{k}_{\boldsymbol{d}}(\mathbf{N} . \boldsymbol{L})+\boldsymbol{I}_{\boldsymbol{L}} \boldsymbol{k}_{\boldsymbol{s}}(\boldsymbol{R} . \boldsymbol{V})^{\boldsymbol{n}}$, where R denotes the reflected light vector at the surface point, $I_{a}=0.8, I_{L}=0.8, k_{a}=0.2$, $k_{d}=0.5, k_{s}=0.5, n=1$.

Hint: No need to normalize vectors. Treat negative dot products as 0 .

a. The diffuse illumination at B using Gouraud shading model is:
i. 0.0
ii. 0.6
iii. 0.8
iv. 3.2
b. The diffuse illumination at B using Phong shading model is:
i. 0.0
ii. 0.6
iii. 0.8
iv. 3.2
c. The specular illumination at B using Gouraud shading model is:
i. 0.0
ii. 1.08
iii. 1.44
iv. 3.2
d. The specular illumination at B using Phong shading model is:
i. 0.0
ii. 1.08
iii. 1.44
iv. 3.2
8) $[\mathbf{2 + 1 + 2 + 3 + 4 + 3 + 1 = 1 6]}$ Consider the triangle $A B C$ being clipped at $E \& F$.

a. If F is the middle point of $B C$, its coordinate is:
i. 200,100
ii. 225, 150
iii. 225,100
iv. 200, 125
b. Therefore, the x-max for the window is:
i. 225
ii. 200
iii. 250
c. And the coordinates of E are:
i. 250,100
ii. 225,100
iii. 200,150
iv. 150,150
d. The interpolation coefficients of B \& C in order to compute E is:
i. $3 / 4$
ii. $3 / 8$
iii. $3 / 16$
e. If the grayscale colors at B \& C are 120 \& 40 respectively, the interpolated grayscale value at E is:
i. 50
ii. 70
iii. 80
iv. 100
\square
f. If the Z-value at B and C are $24 \& 40$ respectively, the interpolated depth at E is:
i. 32
ii. 34
iii. 36
iv. 38
g. When rendering E , you find that the depth buffer at that point is set at 40. Would E pass the depth buffer test?
i. Yes
ii. No
9) $[\mathbf{2 + 1 = 3}]$ The square abcd is the window in which a scene is to be rendered. The projection of a quadrilateral in the screen space is given by ABCD. Consider using Sutherland-Hodgeman's algorithm to clip this polygon. The order of the window edges to be considered is right, bottom, left and top.

a. The clipping at the right edge of the window will result in the clipping of the which of the following edges:
i. AD
ii. $C D$
iii. $B C$
iv. $A B$
b. The biggest contributor to the efficiency of Sutherland-Hodgeman's technique is:
i. Integer Computation
ii. Edge Table Data Structure
iii. Pipelining
iv. Spatial Subdivision

Student ID: \square
10) $[\mathbf{1 + 2 + 2 = 5]}$ Consider an octree data structure for spatial subdivision being used for view frustum culling.
a. Each node of an octree has:
i. 2 children
ii. 4 children
iii. 8 children
iv. 16 children
b. If the bounding volume of the root of the octree is known, one can calculate the bounding volume of:
i. Only the level 1 nodes
ii. All the other nodes
iii. Only the leaf nodes
c. View frustum culling is effectively finding:
i. A cut of the octree
ii. Height of the octree
iii. Ordered traversal of the octree
\square
11) $[\mathbf{2 + 2 + 2 + 1 + 2 + 1 + 2 + 1 + 4 = 1 7}]$ Consider rasterizing the line $A B$ where $A=(4,8) \& B=(7,10)$ and their respective gray colors are 0.2 \& 0.8 respectively. The following questions are assume rasterizing this line using Bresenham's integer arithmetic method.
a. $d y$ is given by:
i. 1
ii. 2
iii. 3
b. $d x$ is given by:
i. 1
ii. 2
iii. 3
c. The decision factor d is initialized to:
i. -1
ii. -2
iii. 1
iv. 2
v. 3
d. The pixel chosen in the first step is:
i. E
ii. NE
e. The updated d after this step is given by:
i. -1
ii. -2
iii. 1
iv. 2
v. 3
f. The pixel chosen in the second step is:
i. E
ii. NE
g. The updated d after this step is:
i. -1
ii. -2
iii. 1
iv. 2
v. 3

Question-11 continues to the next page

```
Student ID:
```

\square
h. The pixel chosen in the third step is:
i. E
ii. NE
i. The interpolated color of the pixel in the second step is given by:
i. 0.2
ii. 0.4
iii. 0.6
iv. 0.8

