Student ID:

\mathbf{C}	\mathbf{S}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	-	\mathbf{Q}	$\mathbf{2}$

Pop Quiz (Week 3) [10 mins] - 14 pts

1) $[\mathbf{3 + 3}=\mathbf{6}]$ Write the 4×4 matrix for following concatenated transformations.
a) $\mathrm{R}_{\mathrm{z}}\left(45^{\circ}\right) \mathrm{T}(1,2,1)$

$$
\left[\begin{array}{cccc}
\cos (45) & -\sin (45) & 0 & 0 \\
\sin (45) & \cos (45) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 3 \frac{\sqrt{2}}{2} \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

b) $\mathrm{S}(1,2,1) \mathrm{R}_{\mathrm{z}}\left(45^{\circ}\right)$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos (45) & -\sin (45) & 0 & 0 \\
\sin (45) & \cos (45) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 \\
2 \frac{\sqrt{2}}{2} & 2 \frac{\sqrt{2}}{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Student ID:

\mathbf{C}	\mathbf{S}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	-	\mathbf{Q}	$\mathbf{2}$

2) [5] Consider a view setup where the eye is located at the origin, the normal to the image plane is given by the vector $(0,1,1)$, and the view-up vector is given by $(1,1,0)$. Find the view transformation.

The normal of the image plane will be the z-axis of our eye. Since we also know the up-vector, we can find the x-axis of our eye by taking the cross product of the normal and up-vector:

$$
X_{n}=N \times U=(0,1,1) \times(1,1,0)=(-1,1,-1)
$$

Now, we can find the y-axis by taking the cross product of the normal (i.e. zaxis) and the x-axis:

$$
Y_{n}=(-1,1,-1) \times(0,1,1)=(2,1,-1)
$$

Next, we must normalize the three vectors to become unit vectors. So, we have:

$$
\begin{gathered}
\left\|X_{n}\right\|=\sqrt{(-1)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{3} \\
\left\|Y_{n}\right\|=\sqrt{(2)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{6} \\
\left\|Z_{n}\right\|=\sqrt{(0)^{2}+(1)^{2}+(1)^{2}}=\sqrt{2}
\end{gathered}
$$

Our normalized vectors are:

$$
\begin{aligned}
& X_{n}^{\prime}=\left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \\
& Y_{n}^{\prime}=\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right) \\
& Z_{n}^{\prime}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

We can now specify our view matrix:

$$
\left[\begin{array}{cccc}
\frac{-1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Student ID:

\mathbf{C}	\mathbf{S}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	-	\mathbf{Q}	$\mathbf{2}$

3) $[\mathbf{1 + 1 + 1 = 3}]$ Mark all the correct answers for each of following questions. a) A rigid body transformation:
i. Preserves lines as lines
ii. Preserves lengths and angles
iii. Preserves ratios of lengths and angles
iv. Can turn parallel lines to intersecting and vice versa
b) An affine transformation:
i. Preserves lines as lines
ii. Preserves lengths and angles
iii. Preserves ratios of lengths and angles
iv. Can turn parallel lines to intersecting and vice versa
c) A projective transformation:
i. Preserves lines as lines
ii. Preserves lengths and angles
iii. Preserves ratios of lengths and angles
iv. Can turn parallel lines to intersecting and vice versa
