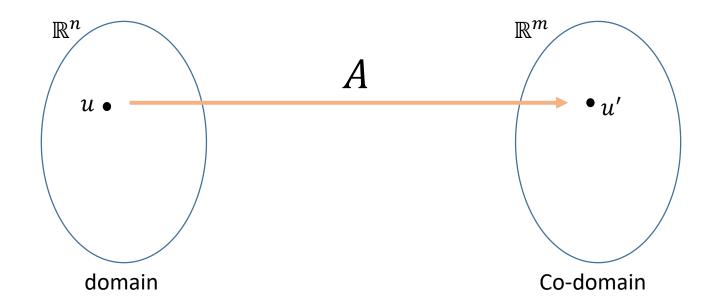
Linear Transformations in Graphics

- Matrix-vector multiplication is a linear transformation.
- If A is a $m \times n$ matrix, and u is $n \times 1$ vector, then matrix A maps the vector u from \mathbb{R}^n to the $m \times 1$ vector u' in \mathbb{R}^m .



- The space in which the vector u exist is called "Domain" (\mathbb{R}^n).
- The space in which the vector u is mapped to is called "Co-domain" (\mathbb{R}^m) .

• The subset of co-domain in which all \mathbb{R}^n vectors are mapped into is called "Range".

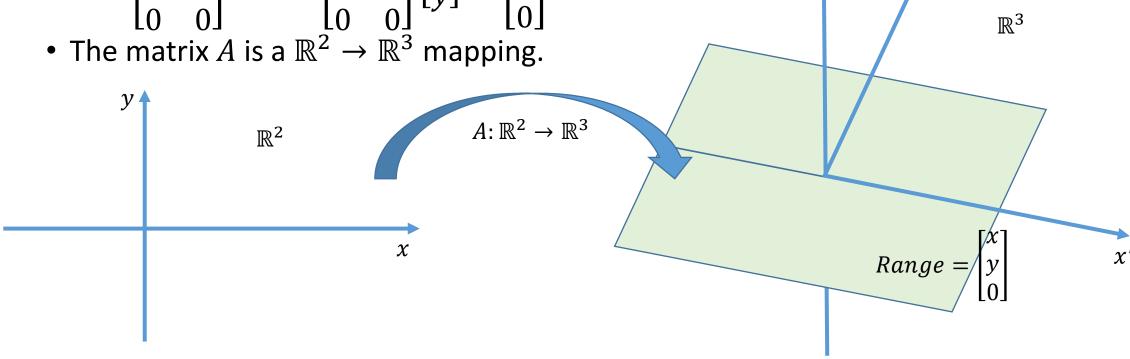
 \mathbb{R}^n A \mathbb{R}^m Range

domain

Co-domain

• Example:

•
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $Au = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$



Linearity condition

• A transformation T is linear if it meets these requirements for all u and v:

$$T(u + v) = T(u) + T(v)$$
$$T(cu) = cT(u)$$

From above implied that

$$T(\mathbf{0}) = \mathbf{0}$$
$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

Linear transformation theorem

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exist a unique matrix A such that

$$T(x) = Ax$$
 for all x in \mathbb{R}^n

- A is a $m \times n$ matrix.
- jth column of A is the vector $T(e_j)$, where e_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1) \quad \dots \quad T(e_n)]$$

Linear transformation theorem

• Proof: Write $x = I_n x = [e_1 \quad ... \quad e_n] x = x_1 e_1 + ... + x_n e_n$, and use the linearity of T to compute

$$T(x) = T(x_1e_1 + \dots + x_ne_n) = x_1T(e_1) + \dots + x_nT(e_n)$$

$$= [T(e_1) \quad \dots \quad T(e_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

- Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle.
- Such a transformation is linear.
- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ rotates into $\begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ rotates into $\begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$
- By linear transformation theorem

$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

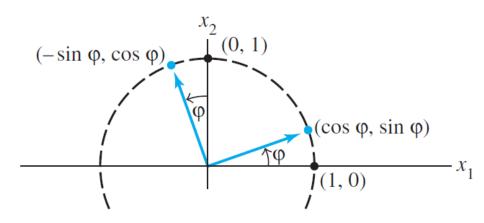
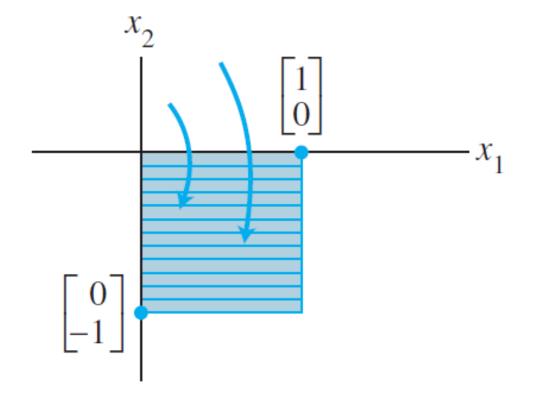


FIGURE 1 A rotation transformation.

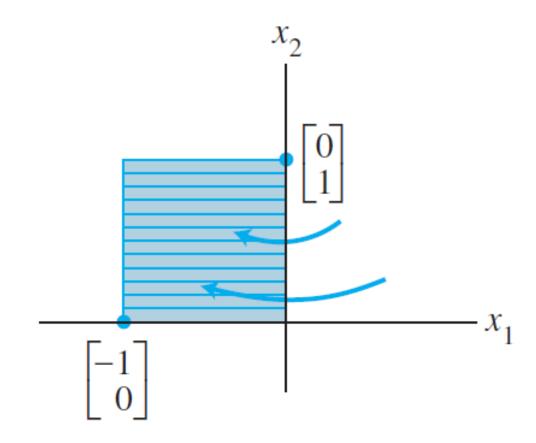
- Reflection Through the x_1 -axis
- Matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$



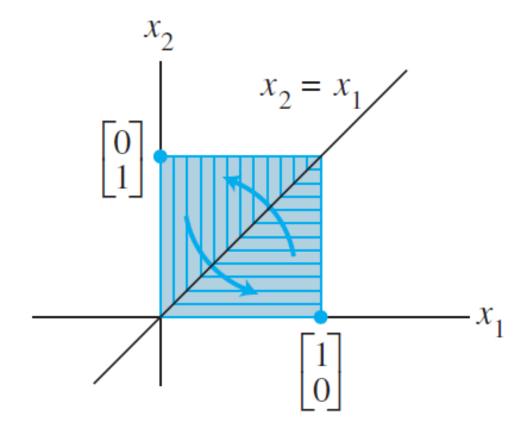
- Reflection Through the x_2 -axis
- Matrix:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$



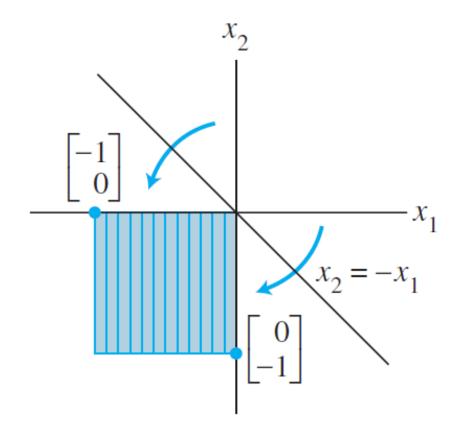
- Reflection Through the line $x_2 = x_1$
- Matrix:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$



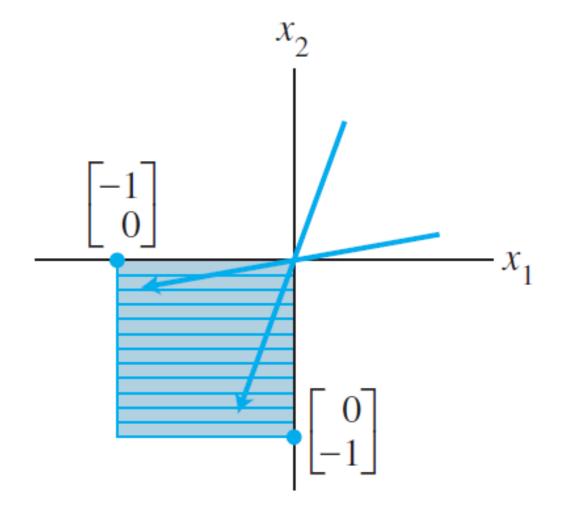
- Reflection Through the line $x_2 = -x_1$
- Matrix:

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$



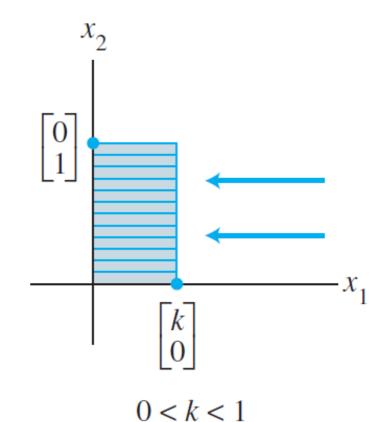
- Reflection Through the origin
- Matrix:

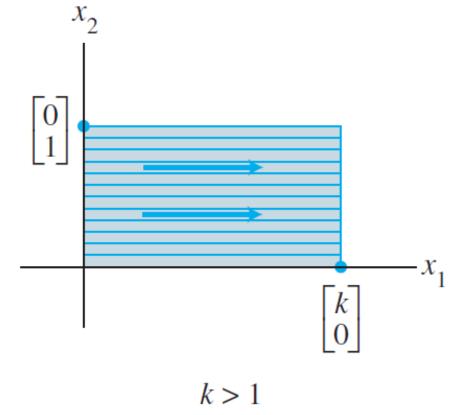
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$



- Horizontal contraction and expansion
- Matrix:

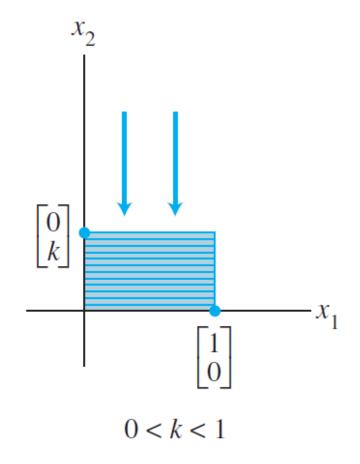
 $\left[egin{matrix} k & 0 \ 0 & 1 \end{smallmatrix}
ight]$

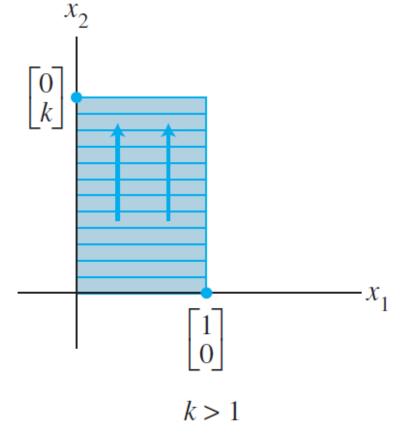




- Vertical contraction and expansion
- Matrix:

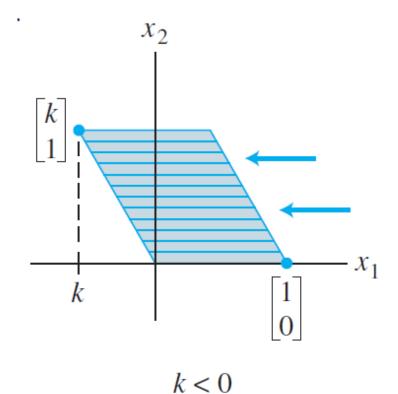
 $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$

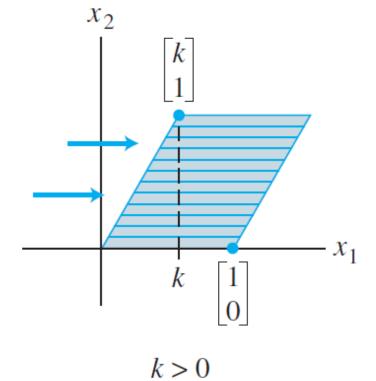




- Horizontal shear
- Matrix:

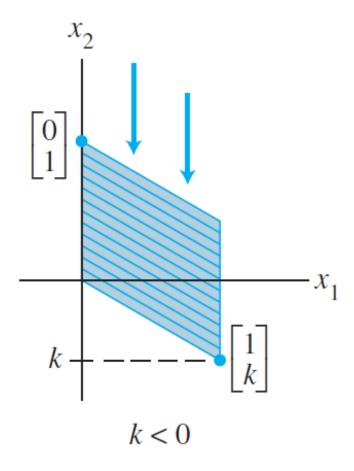
 $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$

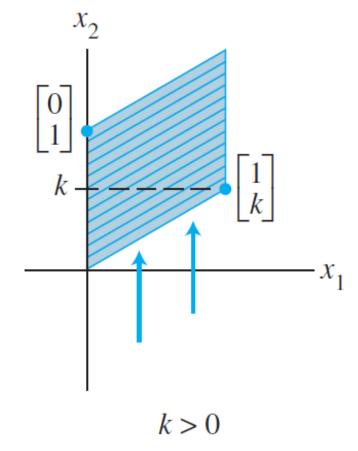




- Vertical shear
- Matrix:

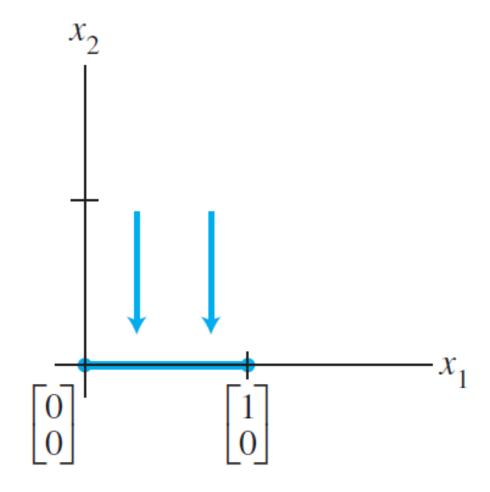
$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$





- Projection onto the x_1 -axis
- Matrix:

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$



- Projection onto the x_2 -axis
- Matrix:

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

