Lecture 10: Vector Algebra: Orthogonal Basis

• Orthogonal Basis of a subspace
• Computing an orthogonal basis for a subspace using Gram-Schmidt Orthogonalization Process
Orthogonal Set

• Any set of vectors that are mutually orthogonal, is a an orthogonal set.

EXAMPLE 1 Show that \(\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \} \) is an orthogonal set, where

\[
\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}
\]

SOLUTION Consider the three possible pairs of distinct vectors, namely, \(\{ \mathbf{u}_1, \mathbf{u}_2 \} \), \(\{ \mathbf{u}_1, \mathbf{u}_3 \} \), and \(\{ \mathbf{u}_2, \mathbf{u}_3 \} \).

\[
\mathbf{u}_1 \cdot \mathbf{u}_2 = 3(-1) + 1(2) + 1(1) = 0
\]
\[
\mathbf{u}_1 \cdot \mathbf{u}_3 = 3 \left(-\frac{1}{2} \right) + 1(-2) + 1 \left(\frac{7}{2} \right) = 0
\]
\[
\mathbf{u}_2 \cdot \mathbf{u}_3 = -1 \left(-\frac{1}{2} \right) + 2(-2) + 1 \left(\frac{7}{2} \right) = 0
\]

Each pair of distinct vectors is orthogonal, and so \(\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \} \) is an orthogonal set.
Orthonormal Set

• Any set of unit vectors that are mutually orthogonal, is a an **orthonormal** set.
• In other words, any orthogonal set is an orthonormal set if all the vectors in the set are unit vectors.
• Example: \(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}\) is an orthonormal set, where,

\[
\mathbf{u}_1 = \begin{bmatrix} \frac{3}{\sqrt{11}} \\ 1 \\ \frac{1}{\sqrt{11}} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ 2 \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -\frac{1}{\sqrt{66}} \\ 4 \\ -\frac{1}{\sqrt{66}} \end{bmatrix}
\]
An orthogonal set is Linearly Independent

If $S = \{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n, then S is linearly independent and hence is a basis for the subspace spanned by S.

PROOF If $0 = c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p$ for some scalars c_1, \ldots, c_p, then

$$0 = 0 \cdot \mathbf{u}_1 = (c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{u}_1$$
$$= (c_1\mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2\mathbf{u}_2) \cdot \mathbf{u}_1 + \cdots + (c_p\mathbf{u}_p) \cdot \mathbf{u}_1$$
$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$$
$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \ldots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$. Similarly, c_2, \ldots, c_p must be zero. Thus S is linearly independent.
Projection of vector \(\mathbf{b} \) on vector \(\mathbf{a} \)

- \(\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta \)
- Vector \(\mathbf{c} \) is the image/perpendicular projection of \(\mathbf{b} \) on \(\mathbf{a} \)
- Direction of \(\mathbf{c} \) is the same as \(\mathbf{a} \)
- Magnitude of \(\mathbf{c} \) is \(\|\mathbf{c}\| = \|\mathbf{b}\| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|} \)

\[\|\mathbf{c}\| = \hat{\mathbf{a}} \cdot \mathbf{b} \]

- If \(\hat{\mathbf{a}} \) is the unit vector of \(\mathbf{a} \), then
- vector \(\mathbf{c} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|} \hat{\mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|} \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \)
Orthogonal Basis

• An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

• Example:
 \[
 \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}
 \]
 is basically the x, y, and z axis. It is an orthogonal basis in \mathbb{R}^3, and it spans the whole \mathbb{R}^3 space. It is also an orthogonal set.
Orthogonal Basis

• We know that given a basis of a subspace, any vector in that subspace will be a linear combination of the basis vectors.

• For example, if \(\mathbf{u} \) and \(\mathbf{v} \) are linearly independent and form the basis for a subspace \(S \), then any vector \(\mathbf{y} \) in \(S \) can be expressed as:

\[
\mathbf{y} = c_1 \mathbf{u} + c_2 \mathbf{v}
\]

• But computing \(c_1 \) and \(c_2 \) is not straight forward.

• On the other hand, if \(\mathbf{u} \) and \(\mathbf{v} \) form an orthogonal basis, then

\[
c_1 = \frac{\mathbf{y} \cdot \mathbf{u}}{\|\mathbf{u}\|} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \quad \text{and} \quad c_2 = \frac{\mathbf{y} \cdot \mathbf{v}}{\|\mathbf{v}\|} = \frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}
\]
Does not work if it is not Orthogonal basis

• \(y = c_1 u + c_2 v \)

• But computing \(c_1 \) and \(c_2 \) is not straight forward (yet).

What is computed is,

• \(d_1 = \frac{y \cdot u}{\|u\|} = \frac{y \cdot u}{u \cdot u} \)

• \(d_2 = \frac{y \cdot v}{\|v\|} = \frac{y \cdot v}{v \cdot v} \)
Orthogonal Decomposition Theorem

Given a vector \(u \) in \(\mathbb{R}^n \), consider the problem of decomposing a vector \(y \) in \(\mathbb{R}^n \) into two components:

\[y = \hat{y} + z \]

where \(\hat{y} \) is in \(\text{span}\{u\} \) and \(z \) is orthogonal to \(u \). \(\hat{y} \) is called the orthogonal projection of \(y \) onto \(u \).
Orthogonal Decomposition Theorem

- Decompose $y = \hat{y} + z$
- Let $\hat{y} = \alpha u$ for some scalar α. Then
 \[
z = y - \hat{y} = y - \alpha u\]
- Since $z \cdot u = 0$, then
 \[
u^T(y - \alpha u) = 0\]
- so we have $u^Ty = \alpha u^Tu$, and
 \[
 \alpha = \frac{y^Tu}{u^Tu}\]
- $\text{Proj}_u(y) = \hat{y} = \alpha u = \frac{y^Tu}{u^Tu}u$
Orthogonal Decomposition Theorem

Let $W = \text{span}\{u_1, \ldots, u_p\}$ is a subspace of R^n, where $\{u_1, \ldots, u_p\}$ is an orthogonal set. Decompose y into two components:

$$y = \hat{y} + z$$

where \hat{y} is a vector in W and z is orthogonal to W. \hat{y} is called the orthogonal projection of y onto W.

- Since \hat{y} is in W, write

$$\hat{y} = c_1 u_1 + c_2 u_2 + \ldots + c_p u_p$$

- $z = y - \hat{y}$ is orthogonal to W, implying that $u_i \cdot z = 0$ for every i.

- From $u_i^T (y - \hat{y}) = 0 \implies c_i = \frac{u_i^T y}{u_i^T u_i}$

- So the orthogonal project of y onto W is

$$\text{Proj}_W(y) = \hat{y} = \frac{u_1^T y}{u_1^T u_1} u_1 + \ldots + \frac{u_p^T y}{u_p^T u_p} u_p$$
Orthogonal Decomposition Theorem

Example

Let $u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Find the orthogonal projection of y onto $W = \text{Span}\{u_1, u_2\}$.
Projection of a vector on a Subspace

- \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal 3D vectors.
- They span a plane (green plane) in 3D
- \(\mathbf{y} \) is an arbitrary 3D vector out of the plane.
- \(\mathbf{y}' \) is the projection of \(\mathbf{y} \) onto the plane.
- \(\mathbf{y}' = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} + \frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \)
- The “point” \(\mathbf{y}' \) is also the closest point to \(\mathbf{y} \) on the plane.
- \(\mathbf{y} - \mathbf{y}' \) is perpendicular to \(\mathbf{y}' \), \(\text{Span}\{\mathbf{u}, \mathbf{v}\} \), and hence \(\mathbf{u} \) and \(\mathbf{v} \)
Closest point of a vector to a span does not depend on the basis of that span

\(\mathbf{y} \) is an arbitrary 3D vector out of the plane.
• \(\mathbf{y}' \) is the projection of \(\mathbf{y} \) onto the plane.
• \(\mathbf{y}' = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 \)
• \(\mathbf{y}' = x_3 \mathbf{u}_3 + x_4 \mathbf{u}_4 \)
• \(\mathbf{y}' = x_5 \mathbf{u}_1 + x_6 \mathbf{u}_3 \)
• ...
• Coordinates of \(\mathbf{y}' \) change if the basis changes.
• But the vector \(\mathbf{y}' \) itself does not change.
• Hence the **closest point** to \(\mathbf{y} \) on the plane does not change.

Even here, \(\mathbf{y} - \mathbf{y}' \) is perpendicular to \(\mathbf{y}' \) and \(\text{Span}\{., .\} \)
Closest point of a vector to a span does not depend on the basis of that span

• FINDING THE CLOSEST POINT OF A VECTOR TO A SPAN means:

“Finding the coordinates of the projection of the vector”

• So, if you want to compute the closest point of a vector to a span, then find an appropriate basis with which you can compute the coordinates of the projection easily.

What would be that basis?
Answer: An orthogonal basis!
Projection on a span of non-orthogonal vectors

• How to find projection of any arbitrary 3D vector onto the span of two non-orthogonal, linearly independent vectors?
• \mathbf{u}_1 and \mathbf{u}_2 are not orthogonal, but linearly independent vectors in 3D.
• \mathbf{y} is an arbitrary 3D vector.
• Find the projection of \mathbf{y} in the space spanned by \mathbf{u}_1 and \mathbf{u}_2.
 • a) First, find the orthogonal set of vectors \mathbf{v}_1 and \mathbf{v}_2 that span the same subspace as \mathbf{u}_1 and \mathbf{u}_2. In other words, find an orthogonal basis.
 • b) Project \mathbf{y} onto the space spanned by orthogonal \mathbf{v}_1 and \mathbf{v}_2 vectors, as we earlier.
How to find an orthogonal basis?

Given a basis \(\{x_1, \ldots, x_p\} \) for a subspace \(W \) of \(\mathbb{R}^n \), find an orthogonal basis \(\{v_1, \ldots, v_p\} \) for \(W \) such that for any \(i = 1, \ldots, p \)

\[
\text{span}\{v_1, \ldots, v_i\} = \text{span}\{x_1, \ldots, x_i\}
\]
How to find an orthogonal basis?

• Assume that the first vector u_1 is in the orthogonal basis. Other vector(s) of the basis are computed that are perpendicular to u_1

• Let $v_1 = u_1$

• Let $v_2 = u_2 - \frac{u_2v_1}{v_1v_1} v_1$

• We know that v_2 is perpendicular to v_1.

• v_2 is in the $Span\{u_1, u_2\}$ (Why?)

• So $Span\{u_1, u_2\} = Span\{v_1, v_2\}$

• And $\{v_1, v_2\}$ is an orthogonal basis

• Projection of y on to the $Span\{u_1, u_2\}$

\[y' = \frac{y \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{y \cdot v_2}{v_2 \cdot v_2} v_2 \]
Gram-Schmidt Orthogonalization Process

Given a basis \(\{x_1, \ldots, x_p\} \) for a subspace \(W \) of \(\mathbb{R}^n \), find an orthogonal basis \(\{v_1, \ldots, v_p\} \) for \(W \) such that for any \(i = 1, \ldots, p \)

\[
\text{span}\{v_1, \ldots, v_i\} = \text{span}\{x_1, \ldots, x_i\}
\]

1. \(v_1 = x_1 \)
2. \(v_2 = x_2 - \text{Proj}_{v_1}(x_2) = x_2 - \frac{x_2^T v_1}{v_1^T v_1} v_1 \)
3. \(v_3 = x_3 - \text{Proj}_{\text{span}\{v_1, v_2\}}(x_3) = x_3 - \frac{x_3^T v_1}{v_1^T v_1} v_1 - \frac{x_3^T v_2}{v_2^T v_2} v_2 \)
4. \(\vdots \)
5. \(v_p = x_p - \text{Proj}_{\text{span}\{v_1, \ldots, v_{p-1}\}}(x_p) \)
 \[
 = x_p - \frac{x_p^T v_1}{v_1^T v_1} v_1 - \frac{x_p^T v_2}{v_2^T v_2} v_2 - \ldots - \frac{x_p^T v_{p-1}}{v_{p-1}^T v_{p-1}} v_{p-1}
 \]
Gram-Schmidt Orthogonalization Process

Example:

Let \(x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \) and \(x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \). Construct an orthogonal basis for \(W = \text{Span}\{x_1, x_2, x_3\} \).
Solving Inconsistent Systems

- Suppose $Ax = b$ has no solutions. Can we still find a solution x such that Ax is “closest” to b?

- Most common cases: A is an $m \times n$ matrix with $m > n$. The system $Ax = b$ has more equations than variables. So in general there is no solution.

- “Best solution” in the following sense: Find \hat{x} such that $A\hat{x}$ is the closest point to b. That is,

 $$\|A\hat{x} - b\| \leq \|Ax - b\|$$

 for all x in \mathbb{R}^n.

- \hat{x} is called the least square solution.
Solving Inconsistent Systems

- Problem: Find \hat{x} such that $A\hat{x}$ is closest to b.
- The problem is equivalent to finding a point \hat{b} in $\text{Col } A$ that is closest to b.
- From the best approximation theorem, the point in $\text{Col } A$ closest to b is the orthogonal projection of b onto $\text{Col } A$:

$$A\hat{x} = \hat{b} = \text{proj}_{\text{Col } A} b$$
Solving Inconsistent Systems

Example 1:
A trader buys and/or sells tomatoes and potatoes. (Negative number means buys, positive number means sells.) In the process, he either makes profit (positive number) or loss (negative number). A week’s transaction is shown; find the approximate cost of tomatoes and potatoes.

<table>
<thead>
<tr>
<th>Tomatoes (tons)</th>
<th>Potatoes (tons)</th>
<th>Profit/Loss (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
Solving Inconsistent Systems

• $1t - 6p = -1$
• $1t - 2p = 2$
• $1t + 1p = 1$
• $1t + 7p = 6$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} t + \begin{bmatrix} -6 \\ -2 \\ 1 \end{bmatrix} p = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

The above equation might not have a solution (values of t and p that would satisfy that equation). So the best we can do is to find the values of t and p that would result in a vector on the right hand side that is as close as possible to the desired right hand side vector.
Solving Inconsistent Systems

Example 2:

EXAMPLE 4 Find a least-squares solution of \(Ax = b \) for

\[
A = \begin{bmatrix}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{bmatrix}, \quad b = \begin{bmatrix}
-1 \\
2 \\
1 \\
6
\end{bmatrix}
\]

SOLUTION Because the columns \(a_1 \) and \(a_2 \) of \(A \) are orthogonal, the orthogonal projection of \(b \) onto \(\text{Col} \, A \) is given by

\[
\hat{b} = \frac{b \cdot a_1}{a_1 \cdot a_1} a_1 + \frac{b \cdot a_2}{a_2 \cdot a_2} a_2 = \frac{8}{4} a_1 + \frac{45}{90} a_2
\]

\[
= \begin{bmatrix}
2 \\
2 \\
2 \\
2
\end{bmatrix} + \begin{bmatrix}
-3 \\
-1 \\
1/2 \\
7/2
\end{bmatrix} = \begin{bmatrix}
-1 \\
1 \\
5/2 \\
11/2
\end{bmatrix}
\]

Now that \(\hat{b} \) is known, we can solve \(A\hat{x} = \hat{b} \). But this is trivial, since we already know what weights to place on the columns of \(A \) to produce \(\hat{b} \). It is clear from (5) that

\[
\hat{x} = \begin{bmatrix}
8/4 \\
45/90
\end{bmatrix} = \begin{bmatrix}
2 \\
1/2
\end{bmatrix}
\]