## Symmetric Matrices and Quadratic Forms

## Quadratic form

- Suppose $\boldsymbol{x}$ is a column vector in $\mathbb{R}^{n}$, and $A$ is a symmetric $n \times n$ matrix.
- The term $\boldsymbol{x}^{T} A \boldsymbol{x}$ is called a quadratic form.
- The result of the quadratic form is a scalar. $(1 \times n)(n \times n)(n \times 1)$
- The quadratic form is also called a quadratic function $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$.
- The quadratic function's input is the vector $x$ and the output is a scalar.


## Quadratic form

- Suppose $x$ is a vector in $\mathbb{R}^{3}$, the quadratic form is:
- $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
- $Q(\boldsymbol{x})=a_{11} x_{1}{ }^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}{ }^{2}+\cdots$

$$
\left(a_{12}+a_{21}\right) x_{1} x_{2}+\left(a_{13}+a_{31}\right) x_{1} x_{3}+\left(a_{23}+a_{32}\right) x_{2} x_{3}
$$

- Since $A$ is symmetric $a_{i j}=a_{j i}$, so:
- $Q(\boldsymbol{x})=a_{11} x_{1}{ }^{2}+a_{22} x_{2}{ }^{2}+a_{33} x_{3}{ }^{2}+2 a_{12} x_{1} x_{2}+2 a_{13} x_{1} x_{3}+2 a_{23} x_{2} x_{3}$


## Quadratic form

- Example: find the quadratic polynomial for the following symmetric matrices:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

- $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}{ }^{2}+2 x_{2}{ }^{2}$
- $Q(\boldsymbol{x})=\boldsymbol{x}^{T} B \boldsymbol{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{1}{ }^{2}+2 x_{2}{ }^{2}-x_{3}{ }^{2}-$ $2 x_{1} x_{2}+2 x_{2} x_{3}$


## Motivation for quadratic forms

- Example: Consider the function

$$
Q(x)=8 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}
$$

Determine whether $Q(0,0)$ is the global minimum.

- Solution we can rewrite following equation as quadratic form

$$
Q(x)=x^{T} A x \quad \text { where } A=\left[\begin{array}{cc}
8 & -2 \\
-2 & 5
\end{array}\right]
$$

The matrix $A$ is symmetric by construction. Eigen vectors of $A$ are

$$
v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \quad v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

With associated eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=4$

## Example Cont'

- Let $x=c_{1} v_{1}+c_{2} v_{2}$, Now we have

$$
Q(x)=x^{T} A x=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}=9 c_{1}^{2}+4 c_{2}^{2}
$$

Therefore $\mathrm{Q}(\mathrm{x})>0$ and $\mathrm{Q}(0,0)$ is the global minimum.

## Quadratic form

- Example: find the symmetric matrix for the following quadratic polynomials:

$$
Q_{1}(\boldsymbol{x})=x_{1}{ }^{2}+x_{2}{ }^{2}+2 x_{1} x_{2}
$$

$$
Q_{2}(x)=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}+2 \sqrt{2} x_{2} x_{3}
$$

- $Q_{1}(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
- $Q_{2}(\boldsymbol{x})=\boldsymbol{x}^{T} B \boldsymbol{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{ccc}1 & 1 & -2 \\ 1 & 1 & \sqrt{2} \\ -2 & \sqrt{2} & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$


## Geometric interpretation in $\mathbb{R}^{2}$

- For diagonal matrix $A, Q(\boldsymbol{x})$ is an ellipse, or hyperbola, or intersection of two lines, or a point.

$\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1, a>b>0$
ellipse

$\frac{x_{1}^{2}}{a^{2}}-\frac{x_{2}^{2}}{b^{2}}=1, a>b>0$
hyperbola

Motivation: This form happens for diagonal matrices and maxima and minima appear along the eigenvectors and $a$ and $b$ are the eigenvalues

## Geometric interpretation in $\mathbb{R}^{2}$

- For non-diagonal matrix $A, Q(\boldsymbol{x})$ is a rotated geometry.

(a) $5 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}=48$

(b) $x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}=16$

Motivation: This form happens for nondiagonal matrices and maxima and minima appear along the eigenvectors (but not aligned). For aligning them we can use change of variables as explained in next slides

## Change of variable

- We can convert the rotated ellipse or hyperbola to its standard form.
- Recall that we can diagonalize symmetric matrices.
- If $A$ is a symmetric matrix, it can be diagonalized as $D=P^{T} A P$, where $P$ is the orthogonal matrix of eigenvectors of $A$.
- Suppose $\boldsymbol{x}=P \boldsymbol{y}$, then

$$
Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}=(P \boldsymbol{y})^{T} A(P \boldsymbol{y})=\boldsymbol{y}^{T} P^{T} A P \boldsymbol{y}=\boldsymbol{y}^{T} D \boldsymbol{y}
$$

## Change of Variable Example

- Example: Make a change of variable that transforms the quadratic form $Q(x)=x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ into a quadratic form with no crossproduct term.
- Solution if we write $Q(x)$ as quadratic form, matrix $A$ is

$$
A=\left[\begin{array}{rr}
1 & -4 \\
-4 & -5
\end{array}\right]
$$

The first step is to orthogonally diagonalize A. Its eigenvalues and with associated unit eigenvectors are

$$
\lambda=3:\left[\begin{array}{r}
2 / \sqrt{5} \\
-1 / \sqrt{5}
\end{array}\right] ; \quad \lambda=-7:\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]
$$

## Example Cont'

- Then $A=P D P^{-1}$ and $D=P^{-1} A P=P^{T} A P$. A suitable change of variable is

Then

$$
\mathbf{x}=P \mathbf{y}, \quad \text { where } \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2} & =\mathbf{x}^{T} A \mathbf{x}=(P \mathbf{y})^{T} A(P \mathbf{y}) \\
& =\mathbf{y}^{T} P^{T} A P \mathbf{y}=\mathbf{y}^{T} D \mathbf{y} \\
& =3 y_{1}^{2}-7 y_{2}^{2}
\end{aligned}
$$

