
Singular Value 
Decomposition



Motivatation

• The diagonalization theorem play a part in many interesting 
applications.

• Unfortunately not all matrices can be factored as 𝐴 = 𝑃𝐷𝑃−1

• However a factorization 𝐴 = 𝑄𝐷𝑃−1 is possible for any 𝑚 × 𝑛 matrix 
A.

• A special factorization of this type, called singular value 
decomposition, is one of the most useful matrix factorizations in 
applied linear algebra. 

• As we will see one application is finding minimum value of Ax for 
solving Ax=0.



Singular Value Decomposition
• Let 𝐴 be a 𝑚 × 𝑛 matrix of rank 𝑟. We cannot find eigenvalues and eigenvectors 

for non-square matrices.

• However, 𝐴 can be diagonalized in such a way that
𝐴𝒗1 = 𝜎1𝒖1
𝐴𝒗2 = 𝜎2𝒖2

⋮
𝐴𝒗𝑟 = 𝜎𝑟𝒖𝑟

• The singular vectors 𝒗1 … 𝒗𝑟 are orthogonal and are the basis for the row space 
of 𝐴. 

• The output vectors 𝒖1 … 𝒖𝑟 are orthogonal and in column space of 𝐴.

• The singular values 𝜎1 … 𝜎𝑟 are all positive numbers in non-increasing order.
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Singular value decomposition

• 𝐴𝒗𝑖 = 𝜎𝑖𝒖𝑖 leads to 𝐴𝑉 = 𝑈Σ:

𝐴 𝒗1 … 𝒗𝑟 = 𝒖1 … 𝒖𝑟

𝜎1

⋱
𝜎𝑟

• Note that in above equation the dimensions are
𝑚 × 𝑛 𝑛 × 𝑟 = (𝑚 × 𝑟)(𝑟 × 𝑟)

• We always can find orthogonal basis for 𝑁𝑢𝑙(𝐴) and 𝑁𝑢𝑙(𝐴𝑇) and 
augment those vectors in matrices 𝑈 and 𝑉, respectively to make them 
into square orthogonal matrices. We can fill zeroes in the rest of diagonal 
elements in matrix Σ. ( row space is orthogonal to null space) 

• Then the matrices dimension in the equation 𝐴𝑉 = 𝑈Σ become:
𝑚 × 𝑛 𝑛 × 𝑛 = (𝑚 × 𝑚)(𝑚 × 𝑛)
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Singular value decomposition

• After adding null space vectors the equation 𝐴𝑉 = 𝑈Σ becomes:

• 𝐴 𝒗1 … 𝒗𝑚 = 𝒖1 … 𝒖𝑛

𝜎1

⋱
𝜎𝑟

0
• How to find 𝑈 and 𝑉?

• 𝐴𝑉 = 𝑈Σ → 𝐴 = 𝑈Σ𝑉−1 = 𝑈Σ𝑉𝑇, since 𝑉 is orthogonal.

• 𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇(𝑈Σ𝑉𝑇)𝑇= 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈Σ2𝑈𝑇, since 𝑉𝑇𝑉 = 𝐼 and 
ΣΣ𝑇 = Σ2

• 𝐴𝑇𝐴 = (𝑈Σ𝑉𝑇)𝑇𝑈Σ𝑉𝑇 = 𝑉Σ𝑇𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇, since 𝑈𝑇𝑈 = 𝐼 and 
ΣΣ𝑇 = Σ2
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Singular value decomposition
• 𝐴 = 𝑈Σ𝑉𝑇

• 𝐴𝐴𝑇 = 𝑈Σ2𝑈𝑇

• 𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• Recall that 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are symmetric matrices where their sizes are 
𝑚 × 𝑚 and 𝑛 × 𝑛, respectively.

• Recall that symmetric matrices are diagonalizable and their 
eigenvector matrix are orthogonal.

• The eigenvalues of 𝐴𝐴𝑇 are the same as eigenvalues of 𝐴𝑇𝐴 since the 
eigenvalues of 𝐴𝐵 are the same as eigenvalues of 𝐵𝐴.

• In other words, Σ2 are the eigenvalues and columns of 𝑉 are the 
eigenvectors of 𝐴𝑇𝐴, and 𝑈are the eigenvectors of 𝐴𝐴𝑇
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Singular value decomposition

• Example: Find matrix 𝐴 =
3 1 1

−1 3 1
to its equivalent singular 

vector decomposition.

• Find 𝐴𝐴𝑇 = 𝑈𝐷𝑈𝑇 ,

• 𝐴𝐴𝑇 =
3 1 1

−1 3 1

3 −1
1 3
1 1

=
11 1
1 11

•
11 − 𝜆 1

1 11 − 𝜆
= 0, 11 − 𝜆 2 − 1 = 0 → 𝜆 − 10 𝜆 − 12 = 0

• 𝜆1 = 12, 𝜆2 = 10.
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Singular value decomposition

• Example Cont’d:

•
11 − 12 1

1 11 − 12
𝒖1 = 𝟎 →

−1 1
1 −1

𝒖1 = 𝟎 → 𝒖1 =
1
1

•
11 − 10 1

1 11 − 10
𝒖2 = 𝟎 →

1 1
1 1

𝒖2 = 𝟎 → 𝒖2 =
1

−1

• 𝑈 =

1

2

1

2
1

2
−

1

2

, 𝐷 =
12 0
0 10
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Singular value decomposition

• Example Cont’d:

• Find 𝐴𝑇𝐴 = 𝑉𝐷𝑉𝑇,

• 𝐴𝐴𝑇 =
3 −1
1 3
1 1

3 1 1
−1 3 1

=
10 0 −2
0 10 4

−2 4 2

•
10 − 𝜆 0 −2

0 10 − 𝜆 4
−2 4 2 − 𝜆

= 0, → 𝜆 𝜆 − 10 𝜆 − 12 = 0

• 𝜆1 = 12, 𝜆2 = 10, 𝜆3 = 0.
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Singular value decomposition

• Example Cont’d:

•
10 − 12 0 −2

0 10 − 12 4
−2 4 2 − 12

𝒗1 = 𝟎 →
−2 0 −2
0 −2 4

−2 4 −10
𝒗1 = 𝟎 → 𝒗1 =

1
−2
−1

•
10 − 10 0 −2

0 10 − 10 4
−2 4 2 − 10

𝒗2 = 𝟎 →
0 0 −2
0 0 4

−2 4 −8
𝒗2 = 𝟎 → 𝒗2 =

2
−1
0

•
10 − 0 0 −2

0 10 − 0 4
−2 4 2 − 0

𝒗3 = 𝟎 →
10 0 −2
0 10 4

−2 4 2
𝒗3 = 𝟎 → 𝒗3 =

1
−2
5
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Singular value decomposition

• Example Cont’d:

• 𝑉 =

1

6

2

5

1

30

−
2

6
−

1

5
−

2

30

−
1

6

1

5

5

30

, 𝐷 =
12 0 0
0 10 0
0 0 0

• 𝐴 = 𝑈Σ𝑉𝑇 →
3 1 1

−1 3 1
=

1

2

1

2
1

2
−

1

2

12 0 0

0 10 0

1

6
−

2

6
−

1

6
2

5
−

1

5

1

5
1

30
−

2

30

5

30
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Geometric interpretation 

• Here is a geometric interpretation 
of SVD for a 2 × 2 matrix 𝑀.

• 𝑉𝑇(in figure 𝑉∗) rotates unit 
vectors.

• Σ scales the vectors

• 𝑈 perform the final rotation.
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Singular value decomposition

• Note that we can assume SVD of matrix 𝐴 as:

𝐴 =  

𝑖=1

𝑟

𝜎𝑖𝒖𝑖𝒗𝑖
𝑇

Where 𝑟 is the rank of the matrix.

• Size of each 𝜎𝑖𝒖𝑖𝒗𝑖
𝑇 is 𝑚 × 𝑛. The greater 𝜎𝑖 the greater values 

added to reconstruct matrix 𝐴.

𝐴 = 𝜎1𝒖1𝒗1
𝑇 + … + 𝜎𝑟𝒖𝑟𝒗𝑟

𝑇
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Solve Ax = 0

• What minimizes Ax. And why?

• As defined previous we can write A as

𝐴 = 𝑈Σ𝑉𝑇 = 𝒖1 … 𝒖𝑛

𝜎1

⋱
𝜎𝑟

0

𝒗1

⋮
𝒗𝑟

Where 𝜎𝑟 is the smallest eigenvalue. Now we have 

Ax =  

𝑖=1

𝑟

𝜎𝑖𝒖𝑖𝒗𝑖
𝑇 x

If we choose 𝑥 = 𝒗𝑟 . Then since all 𝑣𝑖
𝑇𝑣𝑟 = 0 𝑖 ≠ 𝑟 we have

𝐴𝑥 = 𝐴𝑣𝑟 = 𝜎𝑟𝒖𝑟𝒗𝑟
𝑇𝑣𝑟 = 𝜎𝑟𝒖𝑟

Smallest value of Ax associate with 𝑥 = 𝒗𝑟. And if 𝜎𝑟 = 0 then 𝒗𝑟 is an answer of 
Ax=0



Pseudo inverse

• Assume 𝐴𝑥 = 𝑏, Then by singular value decomposition of A we have
𝐴𝑥 = 𝑏 ⇒ 𝑈Σ𝑉𝑇𝑥 = 𝑏

Σ𝑉𝑇𝑥 = 𝑈𝑇𝑏
𝑉𝑇𝑥 = Σ∗𝑈𝑇𝑏
𝑥 = 𝑉Σ∗𝑈𝑇 𝑏

• 𝑉Σ∗𝑈𝑇 called the pseudo inverse of A . It is useful for finding inverse 
of non-square matrices. 



Applications

• One of the applications of SVD is dimensionality reduction.

• A 𝑚 × 𝑛 matrix can be thought of gray level of a digital image.

• If the image 𝐴 is decomposed to its singular values and vectors, we 
can pick only the most significant 𝒖𝑖’s, 𝜎𝑖’s and 𝒗𝑖’s.

• By doing this we can compress the information of the image.

• Suppose the image 𝐴 is 𝑚 × 𝑛.

•  𝐴 =  𝑖=1
𝐾 𝜎𝑖𝒖𝑖𝒗𝑖

𝑇

• In next slide you will see the original image and its compressed up to 
K most significant singular values.
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Image compression using SVD

Original

K=128

K=32K=8

K=512
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