Singular Value
Decomposition



Motivatation

* The diagonalization theorem play a part in many interesting
applications.

 Unfortunately not all matrices can be factored asA = PDP~1!

* However a factorization A = QDP~1 is possible for any m X n matrix
A.

* A special factorization of this type, called singular value
decomposition, is one of the most useful matrix factorizations in
applied linear algebra.

* As we will see one application is finding minimum value of Ax for
solving Ax=0.



Singular Value Decomposition

* Let A be am X n matrix of rank 7. We cannot find eigenvalues and eigenvectors
for non-square matrices.

* However, A can be diagonalized in such a way that

Av1 — 0-1u1
AVZ = O-zuz
Av, = o, u,

* The singular vectors v, ... v,. are orthogonal and are the basis for the row space
of A.

* The output vectors u, ... u,- are orthogonal and in column space of A.

* The singular values oy ... g,- are all positive numbers in non-increasing order.



Singular value decomposition

* Av; = o;u; leads to AV = UX: ]
01
Alv;, ... v.|=lu .. u,

_ 1 1 11 Or_
* Note that in above equation the dimensions are
mxn)(nxr)=mXxXr)(r Xr)

* We always can find orthogonal basis for Nul(4) and Nul(A") and
augment those vectors in matrices U and V, respectively to make them
into square orthogonal matrices. We can fill zeroes in the rest of diagonal
elements in matrix X. ( row space is orthogonal to null space)

* Then the matrices dimension in the equation AV = UX become:
(mXxXn)(nxn)=((mxm)(mxn)



Singular value decomposition

» After adding null space vectors the equation AV = UX becomes:
- -0-1 7]

cAlvy ... vyul=lu ... u,
O-T

- - L O_
e How to find U and V' ?

e AV =UX -> A=UXV~1 = UZVT, since V is orthogonal.

. AA: UZZVT(UZVT)T UzvVIveTuT = Ux?07, since V'V =1 and
XY =X

. AT17f1 = (UZVT)TUZVT VETUTUTVT = VZ%VT since UTU = I and
»



Singular value decomposition

« A=UxVT
« AAT = UzeUT
c ATA =Vv3eyT

e Recall that AAT and AT A are symmetric matrices where their sizes are
m X m and n X n, respectively.

* Recall that symmetric matrices are diagonalizable and their
eigenvector matrix are orthogonal.

* The eigenvalues of AA” are the same as eigenvalues of AT A4 since the
eigenvalues of AB are the same as eigenvalues of BA.

* In other words, X4 are the eigenvalues and columns of V are the
eigenvectors of AT A, and Uare the eigenvectors of AAT



Singular value decomposition

1

3 1] to its equivalent singular

 Example: Find matrix A = [ 1
vector decomposition.

* Find AAT = UDUT,

R R Y B P

. ‘11—/1 o /1|—o (11-1)2-1=0 > (A1—=10)(1—=12) =0

- 1, = 12,1, = 10.



Singular value decomposition

* Example Cont’d:

' [11;12 11i12]“1=0 _’[_11 _11]“1=°*“1=[ﬂ

. [11110
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Singular value decomposition

* Example Cont’d:

* Find ATA =VDVT,

3 ] [10 —]
« AAT =1 10
) 1 1 3 1
10— A 0 —2
0 10—-1 4 |=0-201-101—-12)=0
—2 4 2 —2

¢ /11 — 12,/12 — 10,/13 = 0.



Singular value decomposition

* Example Cont’d:

10 —12 0 —2 -2 0 =2 1
¢ 0 10 —12 4 v1=0—> 0 —2 4 v1=0—>v1=—2

—2 4 2—12 -2 4 -10 —1
10 — 10 0 —2 0 0 -2 2
* 0 10 — 10 4 v2=0—> 0 0 4 v2=0—>v2= —1
—2 4 2—10 -2 4 -8 0
10—-0 0 —2 10 0 -2 1
¢ 0 10—-0 4 V3:O_> 0 10 4 V3:O—>v3: —2
—2 4 2—0 —2 4 2 5



Singular value decomposition

* Example Cont’d:
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Geometric interpretation

* Here is a geometric interpretation
of SVD for a 2 X 2 matrix M.
« V1(in figure V*) rotates unit

vectors.

- &

* ¥ scales the vectors Ve U

e U perform the final rotation.

M=U-X-V*



Singular value decomposition

 Note that we can assume SVD of matrix 4 as:

r
A= z Uiuivl-T
=1

Where r is the rank of the matrix.

e Size of each o;u;v;T is m X n. The greater g; the greater values
added to reconstruct matrix A.

A

UlulvlT T ... T+ UrurvrT




Solve Ax =0

* What minimizes Ax. And why?
* As defined previous we can write A as

0-1 l ; ‘
o :
T 0 v,

Where o, is the smallest eigenvalue. Now we have

AX = Z al-ul-vl-T X

i=1
If we choose x = v,.. Then since all v/ v, = 0 (i # r) we have
Ax = Av, = o,u, v, ' v, = o, U,
Smallest value of Ax associate with x = v,.. And if o, = 0 then v,. is an answer of
Ax=0

A=U0xVT=|u, .. u,




Pseudo inverse

 Assume Ax = b, Then by singular value decomposition of A we have
Ax=b =2 UZVTx =b
YWIix=UTh
Vix =32*UTh
x = (VE*UDD
e VZ*UT called the pseudo inverse of A . It is useful for finding inverse
of non-square matrices.



Applications

* One of the applications of SVD is dimensionality reduction.
* Am X n matrix can be thought of gray level of a digital image.

* If the image A is decomposed to its singular values and vectors, we
can pick only the most significant u;’s, g;’s and v;’s.

* By doing this we can compress the information of the image.
e Suppose the image A ism X n.
» A= Yicq ouv;”

* In next slide you will see the original image and its compressed up to
K most significant singular values.



lmage compression using SVD

K=128 K=512

Original




