Singular Value Decomposition

Motivatation

- The diagonalization theorem play a part in many interesting applications.
- Unfortunately not all matrices can be factored as $A=P D P^{-1}$
- However a factorization $A=Q D P^{-1}$ is possible for any $m \times n$ matrix A.
- A special factorization of this type, called singular value decomposition, is one of the most useful matrix factorizations in applied linear algebra.
- As we will see one application is finding minimum value of $A x$ for solving $\mathrm{Ax}=0$.

Singular Value Decomposition

- Let A be a $m \times n$ matrix of rank r. We cannot find eigenvalues and eigenvectors for non-square matrices.
- However, A can be diagonalized in such a way that

$$
\begin{gathered}
A \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1} \\
A \boldsymbol{v}_{2}=\sigma_{2} \boldsymbol{u}_{2} \\
\vdots \\
A \boldsymbol{v}_{r}=\sigma_{r} \boldsymbol{u}_{r}
\end{gathered}
$$

- The singular vectors $\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{r}$ are orthogonal and are the basis for the row space of A.
- The output vectors $\boldsymbol{u}_{1} \ldots \boldsymbol{u}_{r}$ are orthogonal and in column space of A.
- The singular values $\sigma_{1} \ldots \sigma_{r}$ are all positive numbers in non-increasing order.

Singular value decomposition

- $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ leads to $A V=U \Sigma$:

$$
A\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \ldots & \boldsymbol{v}_{r}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]
$$

- Note that in above equation the dimensions are

$$
(m \times n)(n \times r)=(m \times r)(r \times r)
$$

- We always can find orthogonal basis for $\operatorname{Nul}(A)$ and $\operatorname{Nul}\left(A^{T}\right)$ and augment those vectors in matrices U and V, respectively to make them into square orthogonal matrices. We can fill zeroes in the rest of diagonal elements in matrix Σ. (row space is orthogonal to null space)
- Then the matrices dimension in the equation $A V=U \Sigma$ become:

$$
(m \times n)(n \times n)=(m \times m)(m \times n)
$$

Singular value decomposition

- After adding null space vectors the equation $A V=U \Sigma$ becomes:
- $A\left[\begin{array}{lll}\boldsymbol{v}_{1} & \ldots & \boldsymbol{v}_{m}\end{array}\right]=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n}\end{array}\right]\left[\begin{array}{llll}\sigma_{1} & & & \\ & & \ddots & \\ & & \sigma_{r} & \\ & & & 0\end{array}\right]$
- How to find U and V ?
- $A V=U \Sigma \rightarrow A=U \Sigma V^{-1}=U \Sigma V^{T}$, since V is orthogonal.
- $A A^{T}=U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma^{2} U^{T}$, since $V^{T} V=I$ and $\Sigma \Sigma^{T}=\Sigma^{2}$
- $A^{T} A=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}$, since $U^{T} U=I$ and $\Sigma \Sigma^{T}=\Sigma^{2}$

Singular value decomposition

- $A=U \Sigma V^{T}$
- $A A^{T}=U \Sigma^{2} U^{T}$
- $A^{T} A=V \Sigma^{2} V^{T}$
- Recall that $A A^{T}$ and $A^{T} A$ are symmetric matrices where their sizes are $m \times m$ and $n \times n$, respectively.
- Recall that symmetric matrices are diagonalizable and their eigenvector matrix are orthogonal.
- The eigenvalues of $A A^{T}$ are the same as eigenvalues of $A^{T} A$ since the eigenvalues of $A B$ are the same as eigenvalues of $B A$.
- In other words, Σ^{2} are the eigenvalues and columns of V are the eigenvectors of $A^{T} A$, and U are the eigenvectors of $A A^{T}$

Singular value decomposition

- Example: Find matrix $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]$ to its equivalent singular vector decomposition.
- Find $A A^{T}=U D U^{T}$,
- $A A^{T}=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 1 & 3 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}11 & 1 \\ 1 & 11\end{array}\right]$
- $\left|\begin{array}{cc}11-\lambda & 1 \\ 1 & 11-\lambda\end{array}\right|=0,(11-\lambda)^{2}-1=0 \rightarrow(\lambda-10)(\lambda-12)=0$
- $\lambda_{1}=12, \lambda_{2}=10$.

Singular value decomposition

- Example Cont'd:
$\cdot\left[\begin{array}{cc}11-12 & 1 \\ 1 & 11-12\end{array}\right] \boldsymbol{u}_{1}=\mathbf{0} \rightarrow\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right] \boldsymbol{u}_{1}=\mathbf{0} \rightarrow \boldsymbol{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- $\left[\begin{array}{cc}11-10 & 1 \\ 1 & 11-10\end{array}\right] \boldsymbol{u}_{2}=\mathbf{0} \rightarrow\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \boldsymbol{u}_{2}=\mathbf{0} \rightarrow \boldsymbol{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
- $U=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right], D=\left[\begin{array}{cc}12 & 0 \\ 0 & 10\end{array}\right]$

Singular value decomposition

- Example Cont'd:
- Find $A^{T} A=V D V^{T}$,
- $A A^{T}=\left[\begin{array}{cc}3 & -1 \\ 1 & 3 \\ 1 & 1\end{array}\right]\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]=\left[\begin{array}{ccc}10 & 0 & -2 \\ 0 & 10 & 4 \\ -2 & 4 & 2\end{array}\right]$
- $\left|\begin{array}{ccc}10-\lambda & 0 & -2 \\ 0 & 10-\lambda & 4 \\ -2 & 4 & 2-\lambda\end{array}\right|=0 \rightarrow \lambda(\lambda-10)(\lambda-12)=0$
- $\lambda_{1}=12, \lambda_{2}=10, \lambda_{3}=0$.

Singular value decomposition

- Example Cont'd:

$$
\begin{aligned}
& \cdot\left[\begin{array}{ccc}
10-12 & 0 & -2 \\
0 & 10-12 & 4 \\
-2 & 4 & 2-12
\end{array}\right] \boldsymbol{v}_{1}=\mathbf{0} \rightarrow\left[\begin{array}{ccc}
-2 & 0 & -2 \\
0 & -2 & 4 \\
-2 & 4 & -10
\end{array}\right] \boldsymbol{v}_{1}=\mathbf{0} \rightarrow \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right] \\
& \cdot\left[\begin{array}{ccc}
10-10 & 0 & -2 \\
0 & 10-10 & 4 \\
-2 & 4 & 2-10
\end{array}\right] \boldsymbol{v}_{2}=\mathbf{0} \rightarrow\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & 4 \\
-2 & 4 & -8
\end{array}\right] \boldsymbol{v}_{2}=\mathbf{0} \rightarrow \boldsymbol{v}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \\
& \cdot\left[\begin{array}{ccc}
10-0 & 0 & -2 \\
0 & 10-0 & 4 \\
-2 & 4 & 2-0
\end{array}\right] \boldsymbol{v}_{3}=\mathbf{0} \rightarrow\left[\begin{array}{ccc}
10 & 0 & -2 \\
0 & 10 & 4 \\
-2 & 4 & 2
\end{array}\right] \boldsymbol{v}_{3}=\mathbf{0} \rightarrow \boldsymbol{v}_{3}=\left[\begin{array}{c}
1 \\
-2 \\
5
\end{array}\right]
\end{aligned}
$$

Singular value decomposition

- Example Cont'd:
$\cdot V=\left[\begin{array}{ccc}\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\ -\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{30}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{5}{\sqrt{30}}\end{array}\right], D=\left[\begin{array}{ccc}12 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0\end{array}\right]$
- $A=U \Sigma V^{T} \rightarrow\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{ccc}\sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0\end{array}\right]\left[\begin{array}{ccc}\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{30}} & -\frac{2}{\sqrt{30}} & \frac{5}{\sqrt{30}}\end{array}\right]$

Geometric interpretation

- Here is a geometric interpretation of SVD for a 2×2 matrix M.
- V^{T} (in figure V^{*}) rotates unit vectors.
- Σ scales the vectors
- U perform the final rotation.

$$
M=U \cdot \Sigma \cdot V^{*}
$$

Singular value decomposition

- Note that we can assume SVD of matrix A as:

$$
A=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

Where r is the rank of the matrix.

- Size of each $\sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$ is $m \times n$. The greater σ_{i} the greater values added to reconstruct matrix A.

$$
A=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\ldots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{T}
$$

Solve $A x=0$

- What minimizes Ax. And why?
- As defined previous we can write A as
$A=U \Sigma V^{T}=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n}\end{array}\right]\left[\begin{array}{llll}\sigma_{1} & & & \\ & \ddots & & \\ & & \sigma_{r} & \\ & & & 0\end{array}\right]\left[\begin{array}{c}\boldsymbol{v}_{1} \\ \vdots \\ \boldsymbol{v}_{r}\end{array}\right]$
Where σ_{r} is the smallest eigenvalue. Now we have

$$
\mathrm{Ax}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \mathrm{x}
$$

If we choose $x=\boldsymbol{v}_{r}$. Then since all $v_{i}^{T} v_{r}=0(i \neq r)$ we have

$$
A x=A v_{r}=\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}{ }^{T} v_{r}=\sigma_{r} \boldsymbol{u}_{r}
$$

Smallest value of Ax associate with $x=\boldsymbol{v}_{r}$. And if $\sigma_{r}=0$ then \boldsymbol{v}_{r} is an answer of $A x=0$

Pseudo inverse

- Assume $A x=b$, Then by singular value decomposition of A we have

$$
\begin{gathered}
A x=b \Rightarrow U \Sigma V^{T} x=b \\
\Sigma V^{T} x=U^{T} b \\
V^{T} x=\Sigma^{*} U^{T} b \\
x=\left(V \Sigma^{*} U^{T}\right) b
\end{gathered}
$$

- $V \Sigma^{*} U^{T}$ called the pseudo inverse of A . It is useful for finding inverse of non-square matrices.

Applications

- One of the applications of SVD is dimensionality reduction.
- A $m \times n$ matrix can be thought of gray level of a digital image.
- If the image A is decomposed to its singular values and vectors, we can pick only the most significant \boldsymbol{u}_{i} 's, σ_{i} 's and $\boldsymbol{v}_{i}{ }^{\prime}$ s.
- By doing this we can compress the information of the image.
- Suppose the image A is $m \times n$.
- $\hat{A}=\sum_{i=1}^{K} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}{ }^{T}$
- In next slide you will see the original image and its compressed up to K most significant singular values.

Image compression using SVD

