
Lecture	2:	Vector-Vector	Operations

• Vector-Vector	Operations	
• Addition	of	two	vectors

• Geometric	representation	of	addition	and	subtraction	of	vectors
• Vectors	and	points

• Dot	product	of	two	vectors	
• Geometric	interpretation	of	the	dot	product	of	two	vectors
• Computation	of	Dot	product
• Dot	product	of	perpendicular	vectors
• Dot	product	of	a	vector	with	itself
• Examples:	Decomposition	of	force	vectors,	Decomposition	of	a	vector	into	orthogonal	components,	

coordinates	of	a	point	in	an	orthogonal	coordinate	system.
• Cross	product	of	two	three	dimensional	vectors	(Self-study)

• Geometric	interpretation	of	a	cross	product
• Area	of	a	triangle

• Cross	product	of	orthogonal	and	parallel	vectors
• Scalar	Triple	Product	(Self-study)

• Geometric	interpretation	of	a	scalar	triple	product
• Volume	of	a	parallelepiped						
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Vector-Vector	Operations

• Vector	addition	(and	subtraction)
• 𝒂 + 𝒃, 𝒂 − 𝒃

• Vector	Multiplication
• Dot	Product:					𝒂 & 𝒃
• Cross	Product:		𝒂×𝒃
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Vector	Addition	(Page	26)

• Two	vector	can	be	added	only	if	they	have	the	same	dimension.
• The	corresponding	components	of	the	two	vector	are	added	together.
• Two	vector	can	be	subtracted	in	the	same	way	of	adding,	by	
subtracting	components.
• Example:
• 2
1 + 1

−1 = 3
0

•
1
0
−1

−
2�

1
0

=
1 − 2�

0 − 1
−1 − 0

=
1 − 2�

−1
−1
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When	can	two	vectors	be	added?

• Only	if	two	vectors	have	the	same	dimension	they	can	be	added.
• Row	vectors	and	column	vectors	of	the	same	dimension	can	be	
added.
• Example:
• 1 + 0 = 1
• 1 2 + 2

−2 = 3 0 = 3
0

• 0
−1 +

2
0.5
1

=	?
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How	to	represent	addition	of	two	vectors	
graphically	(Ch.	1.3	P.	26)
• Draw	one	vector.	
• Draw	the	other	vector.
• Draw	one	vector	along	the	diagonal	of	the	parallelogram	formed	by	
P1	and	P2.
• Example:

• 3
1 + 1

2 = 4
3

5

P1	(3,1)

P2	(1,2)

P1+P2	(4,3)



How	to	represent	addition	of	three	vectors	
graphically
• Another	way	to	add	multiple	vectors	graphically	is	to	link	the	tail	of	
one	vector	with	the	head	of	another	vector	as	shown	below.
• The	final	vector	is	obtained	by	connecting	the	origin	and	the	head	of	
the	last	vector.
• Example:

• 3
2 + 1

0 + 0
1 = 4

3

6

P1	(3,2)

P2	(1,0)

P1+P2	+	P3	(4,3)

P3	(0,1)



How	to	represent	subtraction	of	two	vectors	
graphically	(Ch.	1.3	P.	26)
• Draw	one	vector.	
• Draw	the	other	vector.
• Draw	one	vector	originated	at	the	tail	of	the	first	vector,	and	ends	at	
the	tail	of	the	second	vector.
• Example:

• 1
2 − 3

1 = −2
1
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P1	(3,1)

P2	– P1	(-2,1)
P2	(1,2)



How	to	compute	vector	between	points?

• Given	two	points	𝑃2 = (𝑥2, 𝑦2 , 𝑧2)and	𝑃8 = 𝑥8, 𝑦8 , 𝑧8

• The		vector	to	𝑃2	from	the	origin	𝑖𝑠	𝒗2 =
𝑥2
𝑦2
𝑧2

and	vector	to	𝑃8 from	

the	origin	is	𝒗8 =
𝑥8
𝑦8
𝑧8

• The	vector	from	𝑃2 to	𝑃8 is	𝒗8-𝒗2 =
𝑥8 − 𝑥2
𝑦8 − 𝑦2
𝑧8 − 𝑧2
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A	(1,1)

𝑨𝑩	(2,2)
B	(3,3)



Algebraic	Properties	of	vector	addition	and	
subtraction
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What	is	a	dot	product	(Inner	product)?

• Dot	product	or	Inner	product	of	vectors	𝒂 and	𝒃 is	represented	as:
• 𝒂 & 𝒃 = 𝑠	

• Dot	product	of	two	vectors	results	in	a	scalar.
• Multiply	the	corresponding	components	of	the	two	vectors
• The	dot	product	equals	to	the	result	of	addition	of	all	the	multiplied	components

•
𝑎2
𝑎8
𝑎J

&
𝑏2
𝑏8
𝑏J

= 𝑎2𝑏2 + 𝑎8𝑏8 + 𝑎J𝑏J.

• Example:
• 2 1 & 1

−1 = 2 − 1 = 1

•
3
−1
0

&
2
1
2�
= 3×2 + −1 ×1 + 0× 2� = 	5
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How	to	dot	two	vectors

• Dot	product	can	be	computed	only	between	vectors	of	same	
dimension.		
• Dot	product	is	commutative
• 𝒂 & 𝒃 = 𝒃 & 𝒂

•
3
−1
0

&
2
1
2�
=

2
1
2�
&
3
−1
0

= 3×2 + −1 ×1 + 0× 2� = 	5
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Geometric	interpretation	of	a	dot	product
• The	result	of	a	dot	product	of	vectors	is	a	scalar,	and	cannot	be	depicted	as	a	
vector.
• However,	this	scalar	value	is	proportional	to	the	cosine	of	the	angle	between	the	
vectors.
• So	dot	product	can	be	computed	in	two	different	ways.	One	as	the	sum	of	the	
product	of	the	corresponding	components	as	mentioned	earlier,	and	the	other	as

𝒂 & 𝒃 = 𝒂 	 𝒃 	cos 𝜃
• Both	computation	methods	will	yield	the	same	result.
• Example:

• 𝒂 = 3�

1
, 𝒃 = 0

2 ,	

• 𝒂 & 𝒃 = 2×2× cos 60° = 2
• By	earlier	approach,	𝒂 & 𝒃 = 3�

1
& 02 =	0+2=2

𝜃
𝒂

𝒃

12



Geometric	interpretation	of	a	dot	product

• 𝒂 & 𝒃 = 𝒂 	 𝒃 	cos 𝜃
• What	if	𝒂 is	a	unit	vector	( 𝒂 =1)
• 𝒂 & 𝒃 would	be	the	length	of	the	perpendicular	projection	of	𝒃 on	𝒂

• Vector	𝒄 is	the	image	of	𝒃 on	𝒂
• Direction	of	𝒄 is	the	same	as	𝒂
• Magnitude	of	𝒄 is
• 𝒄 = 	 𝒃 	cos 𝜃 = 𝒂&𝒃

𝒂
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𝒃

𝒂𝜃

𝒄



Dot	product	with	itself

• From	the	geometrical	representation	of	dot	product	it	is	inferred	that	
the	dot	product	of	a	vector	with	itself	is	its	squared	magnitude

𝒂 & 𝒂 = 𝒂 𝒂 cos 0° = 𝒂 8

• Now	if	the	vector	is	a	unit	vector	its	dot	product	with	itself	equals	to	1
𝒂R & 𝒂R = 𝒂R 𝒂R cos 0° = 1

• Example:
• 𝒂 = 2

−1 , 𝒂 & 𝒂 = 28 + −1 8 = 5 = 28 + −1 8� 8

• 𝒂R = 0.6
0.8 , 𝒂R & 𝒂R = 0.68 + 0.88 = 1 = 1×1
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Dot	product	of	perpendicular	vectors

• From	the	geometric	representation	of	dot	product,	it	is	inferred	that	
the	dot	product	of	two	perpendicular	vector	is	equal	to	zero,	since	
cos 90° = 0 .
• Example:
• 𝒂 = 2

2 , 𝒃 = −1
1

• 𝒂 & 𝒃 = 2× −1 + 2×1 = 0
• 𝒂 & 𝒃 = 	 8� × 2� × cos 90° = 0
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Application	of	Dot	product

• Decomposition	of	a	vector	into	its	orthogonal	components.
• b	=		𝑏 cos 𝜃 𝑋V + 𝑏 sin 𝜃 𝑌V

𝒃

𝑿
𝜃

𝒀

𝒃𝐜𝐨𝐬𝜽

𝒃 𝐬𝐢𝐧𝜽



What	is	the	cross	product	
• Cross	product	is	computed	between	(N-1)	vectors	in	a	𝑁-D	space,	where	
𝑁 ≥ 3
• The	result	of	cross	product	is	a	vector in	𝑁-D	space.	Hence	it	is	also	called	
vector	product.
• The	cross	product	vector	is	perpendicular	to	all	the	(N-1)	vectors	used	to	
compute	it.
• Let,	a	=	[a1,	a2,	a3]	&	b	=	[b1,	b2,	b3] then,	

a	x	b	=	[	a2b3	– a3b2,	a3b1	- a1b3,	a1b2	- a2b1]

(	we	will	discuss	about	this	again	when	we	study	determinants.	)
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Geometric	interpretation	of	cross	product
• a	x	b	= 𝒂 	 𝒃 	sin 𝜃𝑛c,	where	𝜃 is	the	angle	between	the	two	vectors	
and	𝑛c is	a	unit	vector	representing	the	direction	of	the	resultant	vector.
• Direction	of	a	x	b	is	perpendicular	to	both	vectors	a	and	b	following	the	right	hand	
rule.

• |a	x	b|	represents	the	area	of	the	parallelogram	determined	by	these	vectors	as	
adjacent	sides.	
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Cross	product	(using	Determinants)

The Cross Product

Part 1: Determinants and the Cross Product

In this section, we introduce the cross product of two vectors. However, the
cross product is based on the theory of determinants, so we begin with a review
of the properties of determinants.
To begin with, the determinant of a 2! 2 array of numbers is deÖned

!!!!
u1 u2
v1 v2

!!!! = u1v2 " u2v1 (1)

Subsequently, the cross product of the vectors u = hu1; u2; u3i and v = hv1; v2; v3i
is deÖned to be a vector of determinants:

u! v =
"!!!!

u2 u3
v2 v3

!!!! ;
!!!!
u3 u1
v3 v1

!!!! ;
!!!!
u1 u2
v1 v2

!!!!

#
(2)

We have constructed (2) so that the direction of u! v satisÖes the right-hand
rule, which says that as the Öngers of the right hand sweep from u to v through
an angle of less than 180!; the thumb points in the direction of u! v

EXAMPLE 1 Compute u! v and v ! u for u = h2; 3; 5i and v =
h6; 7; 9i :

Solution: To do so, we construct the vector of determinants in (2),

u! v =
"!!!!

3 5
7 9

!!!! ;
!!!!
5 2
9 6

!!!! ;
!!!!
2 3
6 7

!!!!

#

1and then we use (1) to evaluate the determinants:

u! v = h3 # 9$ 7 # 5; 5 # 6$ 9 # 2; 2 # 7$ 6 # 3i = h$8; 12;$4i (3)

Notice however that v ! u is

v ! u =
!""""

7 9
3 5

"""" ;
""""
9 6
5 2

"""" ;
""""
6 7
2 3

""""

#
= h8;$12; 4i

That is, v ! u = $ (u! v), which can be shown to be true in general. Indeed,
each of the following follow from direct calculation.

Theorem 3.1: The cross product is deÖned only for 3 dimensional
vectors u and v: Moreover, the following hold:

i) v ! u = $ (u! v)
ii) u! u = 0
iii) (ku)! v = k (u! v) = u! kv
iv) a! (u+ v) = a! u+ a! v

The determinant of a 3! 3 array of numbers is deÖned
""""""

r1 r2 r3
u1 u2 u3
v1 v2 v3

""""""
= r1

""""
u2 u3
v2 v3

""""+ r2
""""
u3 u1
v3 v1

""""+ r3
""""
u1 u2
v1 v2

"""" (4)

Alternatively, we can calculate (4) by repeating the Örst two columns after the
determinant, and then computing the sums of the products along the 3 main
diagonals and the 3 o§ diagonals. The determinant is then the di§erence of the
two sums:

(5)

If we put i, j; and k in the Örst row of (4), we obtain
""""""

i j k
u1 u2 u3
v1 v2 v3

""""""
= i

""""
u2 u3
v2 v3

""""+ j
""""
u3 u1
v3 v1

""""+ k
""""
u1 u2
v1 v2

""""

Thus, we can also calculate u! v using a 3-dimensional determinant.
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• Taking	the	dot	product	of	u	x	v	with	either	u	or	v	results	in	a	zero	
vector.	This	proves	that	u	x	v	is	orthogonal	to	both	u	and	v.	

Cross	product	(using	Determinants)

−8, 12,−4 	 & 2, 3, 5 = 0, 0, 0
	

−8, 12,−4 	 & 6, 7, 9 = [0, 0, 0]



Cross	product	of	parallel	vectors

• From	the	geometrical	representation	of	cross	product	it	is	inferred	
that	the	cross	product	of	parallel	vectors	is	a	zero	vector

a	x	b	= 𝒂 𝒃 sin 0° = 0

• i.e.	cross	product	of	a	vector	with	itself	is	zero	vector
a	x	a	= 𝒂 𝒂 sin 0° = 0
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Cross	product	of	orthogonal	vectors

• From	the	geometric	representation	of	cross	product,	it	is	inferred	that	
the	cross	product	of	two	orthogonal	vector	is	the	product	of	their	
magnitude.

a	x	b	= 𝒂 𝒃 sin 90° = 𝒂 𝒃
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Application	of	Cross	product

• To	find	the	area	of	a	triangle.

Area	of	triangle	=	2
8
h	|B|

=	2
8
|A|	sinθ |B|

=	2
8
|	A	x	B | q

B

A

h

O



Application	of	Cross	product
• Example	of	Area	of	Triangle
Find	the	area	of	triangle	with	vertices	
P1	(2,2),	P2(4,4)	and	P3(6,1)	:

P2 (4; 4) ; and P3 (6; 1) :

Solution: It is easy to see that u = h2; 2i and v = h4;#1i. As
vectors in R3, we have u = h2; 2; 0i and v = h4;#1; 0i : Thus, their
cross product is

u$ v =

!""""
2 0
4 0

"""" ;
""""
0 2
0 #1

"""" ;
""""
2 2
4 #1

""""

#

= h0; 0; 2 % (#1)# 4 % 2 i
= h0; 0;#10i

Since the triangle has half of the area of the parallelogram formed
by u and v; the area of the triangle is

Area = ku$ vk =
1

2

q
02 + 02 + (#10)2 = 5 units2

EXAMPLE 6 Find the area of the triangle with vertices P1 (3; 0; 2) ;
P2 (4; 6; 1) ; and P3 (0; 5; 4) :

Solution: To do so, we Örst construct the vectors u and v:

u =
###!
P1P2 = h4# 3; 6# 0; 1# 2i = h1; 6;#1i

v =
###!
P1P3 = h0# 3; 5# 0; 4# 2i = h#3; 5; 2i

8

Note	the	area	of	the	parallelogram	formed	
by	u	and	v	will	be	2	*	5	units2 =	10units2



Algebraic	Properties	of	dot	and	cross	
products



Dot	product Cross	product

Result of	a	dot	product	is	a	scalar	
quantity.

Result of	a	cross	product	is	a	vector	
quantity.

It	follows	commutative	law. It	doesn’t	follow	commutative	law.

Dot	product	of	vectors	in	the	same	
direction	is	maximum.

Cross product	of	vectors	in	same	
direction	is	zero.

Dot	product	of	orthogonal vectors	is	
zero.

Cross	product	of orthogonal	vectors	is	
maximum.

It	doesn’t	follow right	hand	system. It	follows	right	hand	system.

It	is	used	to	find	projection	of	vectors. It	is	used	to	find	a	third vector.

It	is	represented	by	a	dot	(.) It	is	represented	by	a	cross	(x)

Dot	Product	vs	Cross	Product



Scalar	Triple	Product

• Scalar	triple	product	of	vectors	a,	b,	c	is	referred	to	as 𝑎 & 𝑏	𝑥	𝑐
• Geometrically	it	represents	the	volume	of	a	parallelopiped

Volume	of	the	parallelepiped

=	(height	H)	(area	of	the	parallelogram	L)

=	(|a 𝐜𝐨𝐬𝜽|)	(|	b	x c	|)

=	|a| (|	b	x	c	|)	|𝐜𝐨𝐬𝜽|

=	|a	.	(	b	x	c	)	|
L

H



Scalar	Triple	Product

Thus, the volume of the parallelpiped spanned by u; v; and w is

which is known as the triple scalar product. Equivalently, V olume = j(u" v) #wj

EXAMPLE 7 Find the volume of the parallelpiped spanned by
u = h2; 0; 0i ; v = h1; 3; 0i, and w = h1; 0; 3i. The Ögure below is
drawn as if all vectors have their initial points at the origin.

Solution: The cross product of u and v is

u" v =
!""""

0 0
3 0

"""" ;
""""
0 2
0 1

"""" ;
""""
2 0
1 3

""""

#
= h0; 0; 6i
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The dot product with w yields the volume:

V olume = j(u" v) #wj = jh1; 0; 3i # h0; 0; 6ij = 18

Exercises
Compute the cross product of u" v and then compute the cross product of
v " u: Also, show that u and v are orthogonal to u" v:

1. u = h2; 1; 0i ; v = h3; 1; 0i 2. u = h2; 1; 0i ; v = h&1; 3; 0i
3. u = h3; 3; 0i ; v = h2; 0; 0i 4. u = h0; 1; 0i ; v = h0; 0; 1i
5. u = h1; 0; 0i ; v = h0; 1; 0i 6. u = h1; 0; 0i ; v = h1; 0; 0i
7. u = h2; 3; 7i ; v = h7; 3; 5i 8. u = h6; 2; 9i ; v = h1; 0; 3i
9. u = h3; 4; 2i ; v = h9; 12; 6i 10. u = h1; 1; 1i ; v = h&1;&1;&1i

Sketch the triangle formed by the three points P1; P2 and P3 and then Önd its
area.

11. P1 (0; 0) ; P2 (1; 2) ; P3 (2; 1) 12. P1 (0; 0) ; P2 (2; 3) ; P3 (1; 1)
13. P1 (1; 3) ; P2 (&2; 5) ; P3 (2; 1) 14. P1 (&1; 4) ; P2 (3; 4) ; P3 (0;&3)
15. P1 (1; 0; 0) ; P2 (0; 1; 0) ; P3 (0; 0; 1) 16. P1 (0; 0; 0) ; P2 (1; 1; 0) ; P3 (1; 1; 1)
17. P1 (0; 0; 0) ; P2 (1; 2; 1) ; P3 (2; 1; 2) 18. P1 (1; 3; 2) ; P2 (2; 7; 9) ; P3 (2; 1; 5)

Sketch the parallelpiped spanned by u, v; and w assuming all vectors have initial
points at the origin. Then use the triple scalar product to calculate the volume
of the parallelpiped.

19. u = h2; 0; 0i ; v = h1; 2; 0i ; w = h0; 0; 3i 20. u = h1; 0; 0i ; v = h1; 1; 0i ; w = h1; 1; 1i
21. u = h2; 0; 0i ; v = h0; 2; 0i ; w = h1; 1; 1i 22. u = h&1; 2; 0i ; v = h2; 1; 0i ; w = h1; 3; 2i
23. u = i+ k; v = 2j& k; w = j+ 2k 24. u = i+ j; v = j+ k; w = k+ i

25. u = hl; 0; 0i ; v = h0; w; 0i ; w = h0; 0; hi 26. u = hl; 0; 0i ; v =
D

lp
2
; lp

2
; 0
E
; w =

D
0; lp

2
; lp

2

E

27. Let u = hu1; u2; u3i and let v = hv1; v2; v3i : Use (2) to show that v " u
is the same as & (u" v) :
28. Show that

jju" vjj = jjujj2 jjvjj2 & (u # v)2

29. Let u = hu1; u2; u3i, v = hv1; v2; v3i ; and a = ha1; a2; a3i : Show that

a" (u+ v) = a" u+ a" v

30. Let u = hu1; u2; u3i and v = hv1; v2; v3i ; and let k be a number. Show
that

k (u" v) = (ku)" v and k (u" v) = u" (kv)
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