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Fig. 1. We introduce a new differential theory of radiative transfer, which lays the foundation for computing the derivatives of radiometric measures
with respect to arbitrary scene parameterizations (e.g., material properties and object geometries). The ability to evaluate these derivatives can facilitate
gradient-based optimization for many diverse applications. As an example, here we optimize the pose of a dodecahedron emitting colored beams inside
a participating medium. Given a target image (d) and an initial configuration (a), the optimization uses derivatives estimated by our method (b) to find
parameters that produce rendered images (c) closely matching the target. Per-iteration optimization loss and difference between true and estimated parameters

(both measured in Ly) are plotted on the right.

Physics-based differentiable rendering is the task of estimating the deriva-
tives of radiometric measures with respect to scene parameters. The ability to
compute these derivatives is necessary for enabling gradient-based optimiza-
tion in a diverse array of applications: from solving analysis-by-synthesis
problems to training machine learning pipelines incorporating forward
rendering processes. Unfortunately, physics-based differentiable rendering
remains challenging, due to the complex and typically nonlinear relation
between pixel intensities and scene parameters.

We introduce a differential theory of radiative transfer, which shows
how individual components of the radiative transfer equation (RTE) can
be differentiated with respect to arbitrary differentiable changes of a scene.
Our theory encompasses the same generality as the standard RTE, allowing
differentiation while accurately handling a large range of light transport
phenomena such as volumetric absorption and scattering, anisotropic phase
functions, and heterogeneity. To numerically estimate the derivatives given
by our theory, we introduce an unbiased Monte Carlo estimator supporting
arbitrary surface and volumetric configurations. Our technique differentiates
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path contributions symbolically and uses additional boundary integrals to
capture geometric discontinuities such as visibility changes.

We validate our method by comparing our derivative estimations to
those generated using the finite-difference method. Furthermore, we use
a few synthetic examples inspired by real-world applications in inverse
rendering, non-line-of-sight (NLOS) and biomedical imaging, and design, to
demonstrate the practical usefulness of our technique.
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1 INTRODUCTION

A fundamental task of physics-based light transport simulation is
to compute the radiant power (generally measured using radiance)
at certain 3D locations and directions in a virtual scene, e.g., those
corresponding to radiometric sensors. Such forward evaluations of
light transport have been a focus of research efforts in computer
graphics since the field’s inception. These efforts have resulted in
mature forward rendering algorithms, including Monte Carlo tech-
niques, that can efficiently and accurately simulate complex light
transport effects such as interreflections and subsurface scattering.

Mathematically, it is convenient to be capable of evaluating not
only a given function but also its various transformations. One such
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transformation of great importance is the function’s derivatives.
In the context of light transport simulation, this corresponds to
differentiable rendering, the process of computing the derivatives of
radiometric measurements with respect to differential changes of
virtual scenes. Differentiable rendering techniques can enable, for ex-
ample, gradient-based optimization when solving high-dimensional
inverse rendering problems, where exhaustive search is typically
impractical. Additionally, these techniques facilitate the efficient
integration of physics-based light transport simulation in machine
learning and probabilistic inference pipelines, where differentiability
is a key requirement.

Unfortunately, and unlike their forward counterparts, derivatives
of radiometric measurements remain challenging to estimate. On
one hand, general-purpose numerical tools for computing deriva-
tives such as finite differences are either too noisy or too biased
when combined with forward Monte Carlo simulations, and scale
poorly to high-dimensional gradients. On the other hand, existing
differentiable rendering algorithms are not sufficiently general to
support differentiation with respect to arbitrary parameters in the
presence of nontrivial scene geometry and complex light transport
effects.

At the core of the challenge is the lack of a comprehensive math-
ematical framework for differential radiometric quantities that en-
compasses all types of high-order light transport. This is in contrast
with the forward rendering case, where this role is fulfilled by the
radiative transfer and rendering equations, which have provided
the foundation for the development of Monte Carlo forward ren-
dering algorithms. We seek to fix this discrepancy by developing a
differential theory of radiative transfer of the same generality as its
forward form. Additionally, we use this theory to derive Monte Carlo
algorithms capable of differentiating arbitrary radiative transfer ef-
fects (e.g., volumetric absorption and scattering, anisotropic phase
functions, and heterogeneity) with respect to arbitrary scene param-
eterizations. This significantly extends prior differentiable rendering
techniques that are restricted to differentiating only surface-based
light transport [Li et al. 2018a].

Concretely, our contributions include:

o The derivation of differential forms of the radiative transfer and
rendering equations, supporting differentiation with respect to
arbitrary scene parameterizations (§4).

e Anunbiased Monte Carlo algorithm for estimating the derivatives
of radiometric measures in the presence of arbitrarily complex
light transport (§5).

We validate our theory and algorithms by comparing our estimated
derivatives with those produced using finite differences (Figure 10).
Additionally, we show applications of our framework in synthetic
examples of several inverse rendering problems (Figure 11), includ-
ing examples relevant to non-line-of-sight (NLOS) and biomedical
imaging (Figure 12), as well as design tasks (Figure 13).

2 RELATED WORK

Radiative transfer. Radiative transfer has been used in natural
sciences and application areas, including astrophysics, neutron
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transport, material science, remote sensing and biomedical imag-
ing [van de Hulst et al. 1957; Chandrasekhar 1960; Pomraning 1973;
Ishimaru 1978; Mishchenko et al. 2006]. This framework was later in-
troduced to computer graphics [Blinn 1982; Kajiya and Von Herzen
1984; Rushmeier and Torrance 1987], where it has been general-
ized to support light transport effects such as those arising from
anisotropic media with organized structures [Jakob et al. 2010] and
non-exponential media [Bitterli et al. 2018].

Monte Carlo volume rendering. Monte Carlo methods have been
the “gold standard” for simulating photon and neutron transport
in complex environments [Spanier and Gelbard 1969]. In computer
graphics, volumetric path tracing and its variations (e.g., [Kajiya
and Von Herzen 1984; Lafortune and Willems 1996; Cerezo et al.
2005]) produce unbiased and consistent estimates of radiometric
measures. Later-developed Markov-Chain Monte Carlo (MCMC)
methods (e.g., [Pauly et al. 2000; Kelemen et al. 2002; Jakob and
Marschner 2012]) additionally enable efficient simulation of chal-
lenging effects such as volumetric caustics. For a comprehensive
survey on Monte Carlo volume rendering techniques, we refer to
the survey by Novak et al. [2018].

Derivatives for rendering. Analytical derivatives have been used in
computer graphics to compute pixel footprints [Igehy 1999], handle
specular light paths [Chen and Arvo 2000; Jakob and Marschner
2012], use Hamiltonian Monte Carlo in rendering [Li et al. 2015],
and enable interactive material editing [Hasan and Ramamoorthi
2013]. These derivatives are specialized for certain types of light
transport effects, and usually neglect geometric discontinuities.

Arvo [1994] presented an analytical method for calculating the
gradients of irradiance. This method is specialized for diffuse sur-
faces and requires clipping triangle meshes, making it difficult to
generalize to arbitrary materials or scale to complex scenes.

Ramamoorthi et al. [2007] introduced a first-order analysis of
light transport, focusing on effects such as soft shadows. Our work
can be considered a generalization of this theoretical framework to
include other effects, such as volumetric light transport.

Physics-based differentiable rendering. Differentiable rendering
has been used to solve analysis-by-synthesis problems in volumetric
scattering [Gkioulekas et al. 2013, 2016], cloth rendering [Khungurn
et al. 2015], prefiltering of high-resolution volumes [Zhao et al.
2016], appearance modeling of human teeth [Velinov et al. 2018],
fabrication of translucent materials [Sumin et al. 2019], reflectance
and lighting estimation [Azinovic et al. 2019], and 3D reconstruc-
tion [Tsai et al. 2019]. All these methods compute radiance deriva-
tives using algorithms specialized to specific light transport effects.

A few recent works have focused on extending differentiable ren-
dering to more general settings. Che et al. [2018] developed a system
capable of computing derivatives with respect to optical material
(reflectance, scattering) and local shape (normal) properties. Unfor-
tunately, this technique cannot differentiate with respect to global
changes of the scene geometry: As we discuss in §3, this requires
calculating derivatives of integrals with evolving boundaries, which
in turn requires evaluating additional boundary integrals.

To overcome these challenges, Li et al. [2018a] generalized the
work by Ramamoorthi et al. [2007] and presented a technique that



Table 1. List of symbols commonly used in this paper.

Symbol Meaning Def.
L, [ins interior and in-scattered radiances (1,5)
L, L, interfacial and reflected/refracted radiances 7)
Le, LS volumetric and interfacial emissions 6,7)
Kt, Kc  transport and collision operators (2,5)
Ks interfacial scattering operator 9)
D distance for the ray (x, —w) to intersect Q 3)
T(x,y) transmittance between x and y (4)
ot, 05, 0y extinction, scattering, and absorption coeff. (4-6)
o single-scattering phase function (5)
fs cosine-weighted BSDF (7)
de f total derivative of f wrt. all scene parameters 7

df.f partial derivative of f wrt. one scene parameter 7

(u,v) dot (inner) product between vectors u and v

X —y  unit vector pointing from x to y, i.e., %

x, X x-tw, x-T®

x0, X0 x—Dw, Xx-Dw-Do

uses an edge-sampling process to handle the boundary terms. De-
spite significantly extending the range of parameters that can be
differentiated, this work still neglects all volumetric light transport
effects, by essentially differentiating only the rendering equation
but not the radiative transfer equation. Our theory subsumes this
work by showing how to differentiate both equations, resulting in
the most general differentiable rendering framework to date.

Derivatives for vision. Having derivatives of rendered images
also enables back-propagation through rendering processes, allow-
ing them to be efficiently integrated into probabilistic program-
ming [Kulkarni et al. 2015] and deep learning pipelines (e.g., as
the decoder of an auto-encoder architecture [Vincent et al. 2010]).
In fact, many recent works [Wu et al. 2017; Meka et al. 2018; Sen-
gupta et al. 2018; Kato et al. 2018; Li et al. 2018b; Che et al. 2018]
leverage various forms of rendering losses to regularize the train-
ing, and improve generalization, of neural networks. The renderers
used in most of these works make restrictive simplifications such
as direct-only illumination [Loper and Black 2014].

3 PRELIMINARIES

We start by briefly reviewing the radiative transfer framework (§3.1).
We then define the radiance derivative with respect to arbitrary
scene parameterizations (§3.2). Finally, we introduce mathematical
background that paves the way for developing our theory of differ-
ential radiative transfer (§3.3). Table 1 summarizes our notation.

3.1 Radiative Transfer

Radiative transfer [Chandrasekhar 1960] uses energy conservation
principles to model light transport in participating media. At its
core is the radiative transfer equation (RTE): Consider a medium
confined in a volume Q C R3 with boundary 8Q. The interior
radiance field L(x, ) is defined over positions x € Q \ dQ and light-
transport directions @ € S2. The steady-state RTE is a linear integral
equation on L that can be expressed in operator form as [Case and
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Zweifel 1967; Spanier and Gelbard 1969]:
L=KtrKcL+0. (1)

Concretely, the transport operator Kt maps any function g : (Q \
9Q) x S?2 — R, to a new function

D
(Krg)(x, @) = [;” T(x', x) g(x’, ) dr, )
where: x’ := x — rw; D is the distance from x to the medium’s

boundary in the direction of —w,
D=inf{r eRy : x —tw € 0Q}; 3)

and T(x’, x) is the transmittance between x’ and x, that is, the
fraction of light that transmits straight between x’ and x without
being absorbed or scattered away:

T(x',x) = exp (— fOT ot(x — 7’ w) df’) , (4)

with ot denoting the medium’s extinction coefficient.
The collision operator Kc maps the interior radiance field L to'

(K L)(x, ) = 05(x) [z fo(x, —0', @) Lix, @) d&’,  (5)

= LI"S(x,w)
where o5 and f;, denote the medium’s scattering coefficient and
single-scattering phase function, respectively. LS
as the in-scattered radiance.’
The source term Q of the RTE (1) is sometimes assumed given for
problems with simple geometries (hence the name). Generally, with
the presence of nontrivial interfaces, Q equals®

Ox,w) = fOD T(x’,x) oa(x") L°(x’, @) dT + T(x0, x) Ls(x0, @), (6)

is usually termed

= (K1 0a L°)(x, @)
where xo := x — Dw is a point on the medium’s boundary, and
0q := 0t—0s is the absorption coefficient. On the right-hand side (RHS)
of this equation, L® represents the medium’s radiant emission, and

L indicates the interfacial radiance governed by the rendering equa-
tion (RE) for all x € Q and w € S?:

Ls(x, w) = /SZ fs(x, —0’, ) L(x, 0") do’ + Li(x, w), 7)

=: Li(x,w)
where f; is the cosine-weighted BSDF, L denotes the interfacially
emitted radiance, and L indicates the reflected/refracted radiance.

Combining the RTE and the RE. The source term Q of the RTE (1)
can also be expressed compactly using operators. Substituting Eq. (7)
into Eq. (6) and regrouping the resulting terms, we have

0=KsL+LO, (8)
where the interfacial scattering operator Kg is defined as
(Ks L)(x, @) = T(xo, x) Ly(x0, @)
= T(xg, x) /SZ fs(x0, —@’, @) L(x0, ®") dew’,

!In this paper, we follow the convention that all directions point away from x when
expressing BSDFs and phase functions, yielding the negative sign before @’ in Eq. (5).
2Precisely, L™ captures the in-scattered radiance before volumetric absorption.

3In Eq. (6), the absorption coefficient o, and radiant emission L¢ are sometimes com-
bined into a single volumetric source term. Here, we follow the work by Kutz et al. [2017]
and separate the two terms. Additionally, when Q is unbounded, D can be infinite for
certain x and w, causing the second term on the RHS to vanish.

©
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which accounts for contributed radiance due to reflection and trans-
mission at the medium’s boundary. The second term in Eq. (8) is

LO(x, w) := (K1 02 L) (x, @) + T(x0, x) LS (x0, @), (10)

indicating the contribution of radiant emission in the medium and
from its boundary.

Based on Egs. (8-10), the RTE (1) and the RE (7) can be combined
into an integral equation on L with an operator form:

L=(KrKc+Ks)L+LO. (11)

Our core theoretical contribution is to derive expressions for the
derivatives of the interior radiance L by differentiating individual
terms in this equation.

3.2 Scene Derivatives

We assume that the scene specifications (such as object geometries
and material properties) are parameterized by a set of m parameters
7t = {m, 72, . .., Tm}, and each parameter varies continuously. The
medium’s domain and its boundary may also vary with these param-
eters. We therefore denote them as Q(sr) and dQ(s), respectively.

To give a few examples, the translation of an object in 3D along a
direction @ can be parameterized by y(r) = y + 7@ for each point
y of the object. The radiance field L depends on the object position
and subsequently the parameter 7. Further, any linear transformed
version of the object can be expressed as y(r) = M(x)y, where
M € R¥3 is a transformation matrix of parameter 7.

Our problem. Provided a specific scene parameterization, we aim
to develop a theory for computing the total derivative (or gradient)
of the interior radiance L with respect to 7. We denote the total
derivative as d,;L € R™ and refer it as the scene derivative of L.

Let L(x, w; i) be the interior radiance L at x € Q(7r)\ dQ(sr) with
the direction w € S?. The scene derivative, d L(x(7), w(7); 7r), is
an m X 1 vector whose i-th element is the partial derivative of L
with respect to the i-th parameter 7;. That is,

O, L(x(5), w(r); 70)
 Lx()), () 7)) — L(x(m), o(); )
im

e—0 €

- ’ (12)
where ni’ ={m, ..., Ti—1, i + €, Ti+1, - . ., Tm ;. We note that it is
crucial to allow both x and @ to depend on the scene parameters 7.
As we will show later, this dependence emerges in a number of in-
teresting applications such as (i) interfacial radiances Ls on evolving
surfaces and (ii) radiometric measurements from moving sensors.
Without loss of generality, our derivation focuses on the partial
derivative of L, denoted as L := d, L, with respect to one scene
parameter 7 € sr. For notational convenience, we omit the depen-
dencies on 7 from x, @, and the radiances in the rest of the paper.

3.3 Differentiating Integrals

Deriving analytic expressions for the scene derivatives of radiances
requires differentiating the integral operators in the RTE (11) and
the RE (7). To this end, we use the Reynolds transport theorem [Leal
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2007],* which originated in fluid mechanics and is a generalization
of Leibniz’s integral rule for differentiation [Flanders 1973].

Theorem 1: Reynolds transport theorem

Let f be a scalar-valued function defined on some n-dimensional
manifold Q(r) parameterized with some 7 € R. Additionally,
let T'(r) € Q(r) be an (n — 1)-dimensional manifold given by
the union of the external boundary dQ(rr) and the internal one
containing the discontinuous locations of f. Then, it holds that

O (-/Q(zr)fdQ(”)) = Joom £ 4Q0T) + frpy (%) Af dT(r),

(13)
where f := 8, f, X := Orx, dQ and dT respectively denote the
standard measures associated with Q and T’; and (-, -) indicates
the dot (inner) product between two vectors. Further, n is the
normal direction at each x € T'(r), and Af is given by*

Af(x) := lin(}i flx+en)— lin(}+ f(x +en), (14)
for all x € I'(x).

“When x approaches I'(,r) from the exterior of the integral domain Q(sr), the
corresponding one-sided limit in Eq. (14) is set to zero.

Intuitively, Theorem 1 states that the derivative of the integral
of a continuous function f over some domain Q(r) depends on
(i) the derivative of f itself over Q(r) (the first integral); and (ii) the
“normal velocity” of the domain boundary and internal discontinu-
ities T'(;r) modulated by the differences between function values
across these boundaries (the second integral)®.

In a special case, for classical Riemann integrals where Q is an
interval (a, b) C R and the integrand f is differentiable everywhere,
it holds that T = {a, b}, and the interface integral in Eq. (13) reduces
to the sum of the integrand evaluated at a and b. Let n = 1, then
(n, x) equals dat x = aand b at x = b. Further, it is easy to verify that
Af(b(r), ) = f(b(rx), x) and Af(a(r), ) = —f(a(x), ), yielding

b b :
ox | (%) femydx= [ (ﬁr’;) Fx,7) dx

: (15)
+b(r) f(b(x), ) = a(x) f(a(x), 7).

which is precisely Leibniz’s rule for differentiation.

In the rest of this paper, we detail how Theorem 1 can be used
to calculate scene derivatives of radiances (§4), and introduce an
unbiased Monte Carlo method for estimating those derivatives (§5).

4 DIFFERENTIABLE RADIATIVE TRANSFER

We now present our differential theory of radiative transfer that
shows how the interior radiance L can be differentiated with respect
to some scene parameter 7 € R. To this end, we derive the partial
derivative L := 8, L by differentiating each of the operators on the
right-hand side (RHS) of Eq. (11).

“We present as Theorem 1 a slightly generalized version of the original theorem.
SPreviously, Li et al. [2018a] used a different but mathematically equivalent method to
demonstrate the need of the boundary integral. This equivalence was further discussed
in his Ph.D. thesis [2019].



Outline of Our Derivations

L=0,KrKeLl + 0, KsL + LO .
——— —— S——
§4.1, §4.2 §4.3 §4.4

Fig. 2. An outline of our derivations in §4. To derive L, we differentiate
the transport and collision operators Kt and Kc in §4.1, the interfacial
scattering operator Ks in §4.3, and the source term L(®) in §4.4.

Assumptions. As most participating media and translucent ma-
terials are non-emissive, we neglect the volumetric emission term
L in Egs. (6) and (10) when deriving L in this section. Additionally,
we assume that: (i) the RTE and RE parameters oy, o5, fo» L¢, fs, and
LS are continuous spatially and directionally; and (ii) there are no
zero-measure light sources (e.g., point and directional) or ideal spec-
ular surfaces (e.g., perfect mirrors). We generalize our derivations
by relaxing some of these assumptions in the supplement.

Overview. Figure 2 outlines the structure of our derivations. As a
preview, based on the assumptions above, the scene partial deriva-
tive L will take the form of Eq. (32) with dependencies between the
involved quantities summarized in Figure 7.

4.1 Differentiation of the Transport & Collision Operators

We start with the first term on the RHS in Figure 2, 8, Kt K¢ L. As
we derive in Appendix A.1, this derivative comprises the terms:

(0Kt Kc L) (x, ) = /OD T(x’, x) os(x") L"S(x’, w) dr
+ fOD T(x’, x)[6s(x”) — Zt(x, w, T) 05(x")] Lins(x’, w)dr
+ D T(x0, x) 0s(x0) L™ (x0, w), (16)

where x’ := x — rw is a point on the ray (x, —®); xp := x — Dw is
the location where the ray intersects the medium boundary; L' is
the in-scattered radiance from Eq. (5); and 2¢(x, w, 7), defined as

Si(x, @, 7) = /OT 6t(x — T’ w) dr’, (17)

appears when we differentiate the transmittance T(x’, x) (see Ap-
pendix A.2).

In Egs. (16) and (17), 6t and d; are essentially material derivatives
given by [Leal 2007]

P
5(x) = é(x) + (%, Vo (x)), (18)

for o € {ot, 05} with V being the gradient operator.
Evaluating the RHS of Eq. (16) also requires D, L' (xg, @), and
L% (x’, @). In what follows, we derive formulas for these terms.

Derivation of D. In the transport operator of Eq. (2), the upper-
bound of the line integral D is determined by the distance a light
ray originating at x with direction —w travels before intersecting
the medium boundary 9Q. Suppose that the boundary dQ(r) has
an implicit representation F(y; 7) = 0 parameterized by . Then,
substituting y with the ray equation yields F(x — Dw; ) = 0 and
D= F_l(O; X, w, ), with F1 being the inverse function of F with
respect to D. Then, D = 0, F1(0;x, w, ).

A Differential Theory of Radiative Transfer « 227:5

Al L F0e (@)
& H, & m
(a) (b)

Fig. 3. Calculating the in-scattered radiance L™ at location xy € dQ with
direction @ pointing toward the interior of the medium (illustrated in gray).
(a) When ’ € H, (i.e., pointing toward the exterior of the medium), the
interior radiance L(xy, @’) involving a line integral (indicated as the dashed
line in green) from the interior is used. (b) When @’ € H_, on the contrary,
the interfacial radiance Lg(x, @”) from the interior is used. This radiance
is in turn determined by interior radiances reflected and refracted by the
interface (shown as dashed lines in orange).

For piecewise-linear shapes, such as polygonal meshes, it holds
that F(x — Dew; ) = (nf¢, x - Dew — pface), where nf2 is the
face

normal of the face containing the intersection point, and p'?“® is an

arbitrary point (e.g., a vertex) on that face. Note that both n2 and

pfaee can depend on the scene parameter 7. Therefore,

<nface’ x _Pface>

N — -1¢0. _
D=0,F (0;x,w, 1) =0y <nface, o)

(19)
In practice, D can also be obtained by differentiating the ray tracing
process using automated differentiation.

In-scattered radiance at the boundary. The last term required for
evaluating 0, Kt Kc L in Eq. (16) involves the in-scattered radi-
ance L™ at boundary point xo. Caution is needed here since light
transport behaves differently at the two sides of the boundary.

L% (x0, w) is given by the limit of L'"(x’, w) as x’ approaches
the boundary location x¢ from the interior of the medium along the
direction of —w. Namely, L™ (xy, ) = lim;_,p- L®(x’, w) with
x’ := x — 7. This limit can be further expressed as

Lins(xo, w) = /H+ fp(xo, —0', ®) L(x0, ®") do” +
Ju folxo, ', @) Ls(xo, ") de’,

where H, and H_ are the two hemispheres separated by the bound-
ary at xo (see Figure 3) given by

Hy = {w’ €§% : (n(x), 0’y > 0},
H- ={w €S : (n(xy),®’) < 0},

(20)

(21)

where n(xy) is the boundary normal pointing toward the exterior
of the medium (i.e., (n(xp), ) < 0).

4.2 Differentiation of the In-Scattered Radiance

Evaluating the RHS of Eq. (16) also requires the derivative of the
in-scattered radiance L™ of Eq. (5). Recall that L™ is expressed
as an integral of fi,(x, —®’, @) L(x, ®") over directions w’. Note
that L(x, »’) may have discontinuities in @’ (for fixed x) due to
visibility changes. Thus, to differentiate L, we must consider how
the discontinuities change with respect to the scene parameter 7.
Let S(x) € S? be a set of spherical curves capturing all discontinu-
ities of fj,(x, ~®’, ®) L(x, ®") with respect to @’ (see the red curves

ACM Trans. Graph., Vol. 38, No. 6, Article 227. Publication date: November 2019.
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Y

AV'
)>§(X)
): \ sin 6

l(dw)= —
o =T

(@) (b)

Fig. 4. (a) Definitions of S(x) and 8%Q(x). (b) Deriving the change-of-
measure ratio sin 8/ ||y — x || in Eq. (23) by projecting a differential curve
dy to the surface of a unit sphere around x.

in Figure 4). At an interior point x € Q \ dQ and direction w € §?,

the derivative of L' can be expressed using Theorem 1 as

LinS(x’ ) = /SZ O [fp(x’ -o’, ) L(x, w’)] do’ + (22)
Sy (11,6} fo(x, 0, ©) AL(x, ) dl(a)

=: BiS(x,w)

The first term on the RHS of this equation is an integral over the unit
sphere S?, which is independent of the scene parameter 7, making
the integral variable @’ also be 7-independent. To evaluate this
term, the derivative of the phase function f, is needed. In practice,
fp usually has analytical expressions, allowing fp(x, —w’, w) to be
obtained using symbolic differentiation.

The second term in Eq. (22) arises from the boundary integral
term in Eq. (13) after Theorem 1 is applied. It emerges due to the
discontinuities of f,(x, —@’, @) L(x, ®") with respect to w’, corre-
sponding to how the discontinuities “move” as the scene parameter
7 varies. We denote this integral as B (x, @), wherein ¢’ is the
change rate (with respect to ) of the discontinuity location w’, and
{(w’) indicates the curve length measure.

In Eq. (22), n is a vector in the tangent space of S? at ' perpen-
dicular to the discontinuity curve (see Figure 6). Further, AL is the
radiance difference across a discontinuity curve in S(x). We discuss
both terms in more detail later in this subsection.

While Bins integrates over a set of spherical curves on S? itis
computationally more convenient to rewrite this integral in terms
of boundary curves in the 3D space. As shown in Figure 5, the
3D boundary curves comprise all the geometric edges that cause
discontinuities of L(x, ®’) in @’ when viewed from x, including
(i) boundary edges associated with only one face; (ii) silhouette edges
shared by a front-facing and a back-facing face; and (iii) front-facing
sharp edges across which the surface normals are discontinuous.

Let 9%Q(x) C 9Q denote all the boundary curves when viewed
from x. By changing the measure of curve length from S? to the 3D

Euclidean space, we rewrite the last term B (x, @) in Eq. (22) as
B™(x,0) =[50 (M1 92y = 0)) fox.x = y. @) )

. 23

AL(x,y = x) Vix.y) (325 dey),

where y — x indicates the normalized direction from y to x,
0, (y — x) is the same as @’, V(x, y) denotes the mutual visibility
between x and y, and 0 is the angle between the tangent direction
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(a) Boundary edges (b) Silhouette edges (c) Sharp edges
Fig. 5. Three types of edges (drawn in yellow) that can cause geometric
discontinuities: (a) boundary, (b) silhouette, and (c) sharp.

aty and y — x (see Figure 4-b). As a result, £(y) here is the length
measure in Euclidean space.

Lastly, we discuss how to compute the ingredients needed for
evaluating Eq. (22), namely, n, , @’ = d,(y — x), and AL.

Normal. The normal n, in Egs. (22) and (23) emerges from the
application of Theorem 1 and represents the normal vector of the
discontinuity boundary on the integration manifold (i.e., S?). There-
fore, n, must be in the tangent space of ®’ € S2.

In practice, when the scene geometry is depicted using polygonal
meshes, the boundary curves 32Q(x) in Eq. (23) are comprised of
polygonal face edges. Consider an edge with endpoints p and q. Its
projection on a unit sphere centered at x is an arc on which every
point has the same normal in the tangent space (see Figure 6-a):

__(p-x)x(g-x)
lltp = x) x (g —x)II’

Change rate of ®’. Boundary curves in d2Q(x) may vary with
respect to the scene parameter 7—for example, an object may move
in 3D along a trajectory parameterized by 7. Suppose that a point
y € 6°Q(x) has a change rate 1. Then, the corresponding direction
o’ = (y — x) has the derivative (which we derive in Appendix A.3):

n, (24)

. xX— xX— X—
o =on (peyy) = g - (o egn) - @)
Evaluating AL. Recall that, in Eq. (22), AL(x, ®’) indicates the
difference in radiance across discontinuity boundaries with respect
to w’. This is given by the difference between two one-sided limits of
AL(x, ®) when @ approaches the discontinuity boundary @’ from
both sides along the normal direction n . Namely,

AL(x,®’) = lim L(x,0’ +en,)— lim L(x,w’ +eny). (26)
e—0~ e—0"

Based on this definition, we evaluate AL in Appendix A.4.

(a) Arc (b) Circle

Fig. 6. The normal directions of arcs and circles (that are respectively the
projections of line segments and spheres) as spherical curves.



4.3 Differentiation of the Interfacial Scattering Operator

We now move on to the second term in Figure 2, the derivative of
K L. Differentiating (Ks L)(x, @) = T(xg, @) L(x0, @) yields

(072Ks L) (x, w) = 9 [T (x0, x) Ls(x0, x)]
= T(xo, x) L5 (x0, ®) + T(x0, x) L% (0, ) (27)
= T(xo, x) [— (Ze(x, 0, D) + D ot(x0)) Li(x0, ) + L (xo, a))] .

The expression of T(xo, x) is derived in Appendix A.2 and equals:
T(x0, x) = =T(x0, x) (Zt(x, @, D) + D ot(x0)) , (28)

where Xt follows the definition in Eq. (17) but with the distance
variable 7 replaced by D. The last term D oy(xo) appears because
the total travel distance D in the medium depends on the medium’s
boundary that might change under 7.

The last component needed in Eq. (27) is L%(x0, @), whose specific
form is analogous to L™ from Eq. (22) since both L™ and L, involve
integrations over S? (with the difference that L% modulates incident
radiance with the cosine-weighted BSDF f;, while L™ uses the
phase function fp). Thus, LX takes the form expressed in Eq. (29):

Li(x, @) =[5 0x [fi(x, —0', 0) L(x, ©")] doo’” +
/aZQ(x) (nJ_, On(y — x)>fs(xs x oy, o) (29)
AL(x,y — x) V(x,y) pdy dl(y).

Scene derivative of the interior radiance L

Lix,w) = fOD T(x’, x)[crs(x’) LNS(x” @) + (65(x”) — Zi(x, , 7) 05 (x")) LIS (x, w)] dr
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where AL follows Eq. (26). Further, 0y fs L in the first term depends
on the derivative of the BSDF f; which can generally be obtained
using symbolic/automated differentiation.

4.4 Completing L
The final term in Figure 2 is the derivative of LO = TLS. Since
Eq. (27) has already provided 9, TLY, L can be obtained by respec-
tively replacing L% and L% in Eq. (27) with L and LS, yielding
LOx, @) = [T (x0. x) L§(x0, )] (30)
= T(x0, x) [— (Zt(x, @, D) + D 0(x0)) LS (x0, @) + LE(x0, @)] .

Similar to f}, and f;, L%(xg, @) can be obtained using symbolic dif-
ferentiation.

Putting together. We now combine Eqs. (16, 27, 30) to get L, the
partial scene derivative of the interior radiance L.

Since Ls = LX + L, adding Eq. (27) and (30) effectively yields the
derivative of the source term Q:

O(x, w) = (8” Ks L+ L<0)) (x, w) (31)
= T(xg, x) [— (St(x, @, D) + Dot(xo)) Lg(x0, @) + Lg(x0, w)] .

Adding Eq. (16) and (31) completes the derivation of L, as shown
in Eq. (32) below. The relations between the quantities on which L
depends are visualized in Figure 7.

(32)

+ T(x0, x)| = (2t(x, @, D) + D 6(x0)) Ls(x0, @) + Ls(x0, @) + D 05(x0) L™ (x0, )]
where 3 is defined in Eq. (17), L™ follows Eq. (22), and L = LY + L€ with L% given by Eq. (29).

4.5 Summary and Discussion

We derived the (partial) scene derivative of the interior radiance L
by differentiating individual components of the RTE (11) using The-
orem 1. The key to the application of this theorem is to properly
handle all the boundary integral terms which arise due to Eq. (13)
and contribute significantly to the final derivatives, as shown in
Figure 8 (middle vs. bottom).

When differentiating the transport operator Kt that involves a
line integral, as expressed in Eq. (16), this boundary term reduces to
evaluating the integrand o5 L™ at the boundary (Eq. (20)) multiplied
by the change rate D of the boundary.

Besides the boundary term, according to Theorem 1, we also need
to differentiate the integrand oy LInS jtself. To this end, we in turn
need the derivative of the in-scattered radiance L™ that is defined
in Eq. (5) and involves a spherical integral of interior radiance L
modulated by the phase function f,. The boundary term B in
this case takes the form of an integral over all 3D edges capable of
creating geometric discontinuities, as expressed in Eq. (23).

The differentiation of the interfacial scattering operator Ks of
Eq. (9) requires the derivative of the reflected/refracted radiance
L% (Eq. (7)), as expressed in Eq (27). This can be done in a similar
manner as the calculation of L™ in Eq. (29), given that both of them
comprise spherical integrals of the interior radiance L.

Relation to prior work. When differentiating radiance, Li et al.
[2018a] only considers the RE (7), which is equivalent to our han-
dling of the reflected/refracted radiance LY in Eq. (29), and neglects
the RTE (11). Thus, their technique cannot handle the volumetric
phenomena governed by the RTE and is a special case of ours.

5 UNBIASED MONTE CARLO ESTIMATOR

We now show how to numerically estimate the scene derivative d, L
of interior radiance L. To this end, we show in §5.1 how individual
components L := 0, L can be computed based on our derivations
from §4. Then, we discuss the differentiation of pixel intensities in
§5.2. Lastly, we discuss handling of the total derivative d L in §5.3.
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L
§4.4, Eq. (32)
O Kr [ins L(O) Q
§4.1, Eq. (16) §4.4, Eq. (30) §4.4, Eq. (31)
1 1
LS at boundary Lins 0 Ks L
§4.1, Eq. (20) §4.2, Eq. (22) §4.3, Eq. (27)
1 1
AL Ir
§A4,Eqgs. (52,53) | | §4.3,Eq. (29)

Fig.7. Asummary of dependencies between L-related quantities derived
in §4. An arrow from A to B indicates that A depends on B.

5.1 Monte Carlo Estimation of L

To estimate L for some scene parameter 7 € 7, we introduce a
Monte Carlo technique analogous to unidirectional volumetric path
tracing (VPT) that handles L and L jointly.

5.1.1  Next-Event Estimation. A variance-reduction technique essen-
tial to the efficiency of VPT is next-event estimation (NEE): instead
of only “tallying” when a light transport path traced from the virtual
sensor hits a light source, NEE-based methods tally at each volu-
metric and interfacial scattering location. We now show how NEE
can be used for estimating L.

Let LV := L — L. Then, the in-scattered radiance L™ (5) and
reflected/refracted radiance L (7) can be expressed as sums of an

0, Ks L
L©
I (nb) 0, % Ke L (ub) |6, % L (ub)
2o B

Fig. 8. Component-wise visualizations of interior radiance L and its
(partial) scene derivative L. In these images, each pixel stores a single ra-
diance value corresponding to the ray going through the center of that
pixel. (Top) original radiance values; (middle) radiance derivatives (of the
red channel) with respect to the vertical displacement of the area light and
the box encoded in false colors; (bottom) same as the middle but with all
the boundary integrals neglected (indicated as “nb”).
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indirect and a direct term of the form

Indirect Direct
Jeofx,—0', @) LO(x, @) de’ + [, f(x, -0, ©) LO(x, o) do’,
) (33)
where f := f; for L' and f := f; for L{.
Since L = L + L), the derivatives of L™ and L. given by
Egs. (22) and (29) can be rewritten as

Indirect
1"S(x, @) = /Sz O | folx, ~0’, @) LD (x, 0")| dw’  +
Direct
fgz Or [fp(xy —o', ) LO(x, w')] do’ + (34)
Edge
fazg(x) (n1,02(y = %) folx,x =y, ®)
AL(x,y — x) V(x.y) (222, dl(y),
and
Indirect
Lg(x, (1)) = ‘/éz (97[ [ﬁ(x, —a)’, w) L(l)(x, (1),)] da)’ +

Direct

fgz Or [f;(x, -0, ) L(O)(x, w’)] do’ + (35)

Edge
Jorae) (1L 02(y = 0)) fo(x.x =y, @)

AL(x,y — x)V(x,y) ”323” de(y).

In Egs. (33-35), the integrals involving 1O (enclosed in green boxes)
act as the direct terms and can be estimated using multiple impor-
tance sampling (MIS). The edge integrals (in orange boxes), on
the contrary, depend on the differences AL of L across boundary
curves (26) and need to be estimated by tracing additional side paths
(see Figure 9 and discussions later). Lastly, the integrals involving
LW (in purple boxes) are analogous to indirect illumination and need
to be estimated recursively based on

L(l)(x, w)

Volumetric Interfacial (36)

= [P T x) 05(x) IP(x, @) dr + T(xo, %) L(x0, @),

and

1D (x, w) = L(x, w) — LO(x, )

Volumetric
_ /D T(x’, x)|os(x") L™5(x’, ) “
0 + (d5(x) = Bi(x, @, 7) 05(x")) L™ (x, )] (37)
Interfacial

(Zt(x, @, D) + D o¢(x0)) Li(x0, @)
+ LE(x0, @) + D o5(x0) L™ (x, w)] .

+ T(xo.x)| -



Algorithm 1 Unbiased Monte Carlo estimator of LM and LM

1: function RADIANCE(xX, X, @, @)
2 Calculate D and D based on x, x, @, and &
3 Sample free-flight distance 7
4 if 7 < D then > volumetric
5: x —x—tw,x' —x—-TO0 >x’ € Q\IQ
6 a « os(x")/or(x")
7 B — (ds(x’) = Zt(x, @, 7) o5(x")) /o1 (x") > (17)
8 Draw @’ ~ fp(x’, —0’, )
9: (LM, L) — rab1aNcE(x’, X', @', 0) > recursion
10: Lins — L(l)
11: 15 LU 4 (fp(x’, ~00", @)/ fiy(x, ~0", w)) LV
12: [ins  pins 4 /SZ Hlx', —o', ) L(O)(x’, o) dow’
13: JETS o JE0TS o fSZ Orlfp(x',—o', ®) 1O/, w")] dw’
14: [ins  [ins L ppGEINTEGRAL(X', X/, 0, fp) »Alg.2
15: L(l) - aLins’ L(l) — qins 4 ﬁLinS
16: else > interfacial
17: X0 «— x — Dw, Xy «— x — Dw — Do > x0 € 0Q
18: Draw @’ with probability p(w”)
19: a — fs(xo, ®', 0)/p(w”)
20: B Zi(x, w, D) + D ot(xp) > (17)
21: (LW, L) — rapIANCE(X0, %0, @, 0) > recursion
22: Lf —aL®
23 1r — a LD + (fi(x0, —0’, @) /p(@”)) LV
24: LY — LE + [ fulxo, —o ) LO(x0, ") de’
25: LY — IE + [ 0xfi(x0. ", @) L (x0, @")] deo’
26: L; «— L% + EDGEINTEGRAL(X), X0, @, f3) > Alg. 2
27: L' « INSCATRADIANCE(X), @) > Appendix B
28: LW L5 1D — —BLE + X + D og(x) L™
29: end if

3. return (LD, (D)
31: end function

Algorithm 2 Monte Carlo estimator of the edge integrals

1: function EDGEINTEGRAL(x, X, @, f)

2 Draw y from 0Q(x) with probability p(y)
3: o’ — (y—>x)

4 Calculate n, , @’ using Egs. (24, 25)

5

AL « DELTARADIANCE(x, X, @', @”)
V(x,y) sin @
lly—x 1l p(y)

> Appendix B
6: return (n;,®’) f(x,-o’, w) AL
7: end function

5.1.2  Our Estimator. Based on Egs. (33-37), we introduce an un-
biased approach (Algorithm 1) that jointly estimates L) and L™
using Monte Carlo integration.

Sampling free-flight distance. Similar to VPT, our algorithm starts
with drawing the free-flight distance 7 (Line 3 of Algorithm 1). If
7 < D, the volumetric terms (in pink boxes) from Egs. (36) and (37)
are estimated at x” = x — rw; otherwise, the interfacial terms (in
yellow boxes) are calculated at xo = x — Dw. We detail how these
terms are estimated in the following.
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@wo

Zo
7z

T
w1

T2
w2
3

Fig. 9. An illustration of the joint estimation of LW (xq, wo) and
LD (xp, wp) using Algorithm 1 for some xp € Q \ dQ and wy € S%. Sim-
ilar to conventional volumetric path tracing, our algorithm begins with
drawing a free-flight distance = (Line 3), yielding a volumetric event at
X1 = X — Twy in this example. Then, a new direction w; is drawn (Line 8)
followed by a recursive estimation of the indirect terms LW (x1, w;) and
LO(xy, 1) (Line 9). Next, the direct terms are estimated at x; (Lines 12
and 13). Lastly, the edge integral term B™S(x;, ay) is handled by drawing
another direction w{ in which L(x1, @}) is discontinuous (Line 14). In this
example, AL(x1, @) arises from a sharp edge and can be estimated by trac-
ing one side path via Eq. (53). Similarly, the joint estimation of L) (x{, e)
and LW(xy, wy) boils down to (i) calculating the indirect terms LD (x5, w3)
and L(l)(xg, w;) recursively; and (ii) estimating the direct and edge terms.
In this illustration, AL(x2, (oé) results from a silhouette edge and is esti-
mated by tracing two side paths via Eq. (52). When estimating LO(xy, wy)
and L(I)(Xz, w3), x3 € OQ corresponds to an interfacial event where the
in-scattered radiance L™ is estimated using Eq. (20).

Volumetric. The volumetric terms in Egs. (36) and (37) are esti-
mated jointly by Lines 5-15 of Algorithm 1. When the volumet-
ric terms are picked, 7 < D, and the probability density of 7 is
p(t) = or(x’) T(x’, x). Dividing p(7) from the integrand cancels out
the transmittance terms, yielding

<L(l)> — GfLinS, <L(l)> — aLinS + ﬁLinS, (38)
with @ and f given by Lines 6 and 7. To estimate LS(x’, ) and
L"S(x’, @), the main ingredients of Eq. (38), we apply Monte Carlo
integration to Egs. (33) and (34) jointly as follows.

e We estimate the indirect terms by drawing a random w’ ac-
cording to the phase function f;, and obtain LY (x’, w’) and
IO, @) recursively (Line 9 of Algorithm 1). Techniques
like Russian roulette can be used here to avoid infinite recur-
sion.

o Then, the indirect terms of Egs. (33) and (34) are respectively
given by LM (x’, @’) and

Ox [ /o' ~0" @) LV (x, )]/ fo(x' . ~00”, )
— iy o) 4 2EmN@) (1)
=LV o)+ T L (@),

which corresponds to Lines 10 and 11.

The direct term can be estimated directly using MIS (Lines 12
and 13).

The edge-integral term is computed via the EDGEINTEGRAL
function (Line 14) that uniformly samples a point y from an
edge and calculates the corresponding AL (Algorithm 2).

ACM Trans. Graph., Vol. 38, No. 6, Article 227. Publication date: November 2019.
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Interfacial. The interfacial terms in Egs. (36) and (37) are handled
with Lines 17-28 of Algorithm 1. Since p(7) = T(xy, x), dividing it
from the direct terms cancels out the transmittances, yielding

(L(l)) =1L, <L(1)> = -BLL+ 1L+ Do Lins, (39)

with f calculated in Line 20. We estimate L% (xo, @) and L% (xo, @), the
main ingredients of Eq. (39), based on Egs. (33) and (35) as follows.

e The indirect terms are computed jointly by sampling «’
according to the local BSDF and acquiring L(xg, ®") and
L(xg, ®") recursively (Lines 21-23 of Algorithm 1).

e The direct terms are estimated directly using MIS (Lines 24
and 25).

e Similar to the volumetric case, the edge-integral term is esti-
mated using the EDGEINTEGRAL function (Line 26).

e Additionally, the in-scattered radiance L™S(xo, @), which
arises from the differentiation of Kt Ks L shown in Eq. (16),
needs to be calculated (Line 27) according to Eq. (20).

The background colors of individual lines in Algorithm 1 indicate
the correspondence to the indirect (purple), direct (green), and edge
(orange) terms in Egs. (33-35).

Lastly, calculating L™ (xg, ) (Line 27 of Algorithm 1) and AL
(Line 5 of Algorithm 2) requires tracing additional side paths. Since
both LS (xy, @) and AL depend on only the interior radiance L but
not its derivative L, the side paths traced to estimate these terms can
be handled using conventional volumetric path tracing. For more
details, please refer to Appendix B.

We illustrate the execution of Algorithm 1 in Figure 9.

5.2 Differentiating Pixel Intensities

Physics-based renderers typically output entire images instead of
individual radiance values, and differentiating rendered images re-
quires calculating scene derivatives of pixel intensities.
Specifically, the intensity of each pixel is typically modeled as a
radiometric measurement given by the inner product between the
radiance L and some (normalized) reconstruction kernel K:

I= [y 1p Lx(w), @) K(u) du, (40)

where x : [0,1)?> — P maps [0, 1)? to the pixel footprint # on the
image plane in 3D, and w(u) depends on the camera model and
equals x(u) — x“®™ for a perspective camera centered at x*™.

When K is independent of the scene parameter & and continuous
in u, Eq. (40) can be differentiated via

I= /[0,1)2 L(x(u), o(u)) K(u) du +

(a1)
Jojo.aye (mo () ALGx(w), e0(w)) K(a) dC(w),

where 90, 1)? denotes all boundary curves representing disconti-
nuities of L (in u). Further, n and x capture the normal and change
rate of these curves.

Notice that, when the camera’s location, orientation, or field
of view depends on 7 (which is required for optimizing camera
parameters), so do the corresponding x(u) and w(u) in Egs. (40) and
(41). This necessitates our derivations of L(x, @) in §4 with x and w
being 7-dependent.
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To estimate I, we draw u; uniformly from [0, 1)2 and uy from
[0, 1)? with probability density p(uz). Then,

(n, X(u2))AL(x(u2), w(uz)) K(u2)

(I) = Llx(w1), w(ur)) K(ur) + o(aty)

s

(42)
where the first term on the RHS can be estimated using Algorithm 1
while the second can be handled by tracing side paths (similar to
the primary edge sampling process in Li et al’s work [2018a]).

5.3 Discussion

Estimating total derivatives. To estimate the total scene deriv-
ative d, L, Algorithm 1 only needs to be executed once in a vec-
torized fashion. Specifically, one can replace all partial derivatives
with their (vector-valued) total derivative counterparts and perform
component-wise calculations between all total-derivative-related
quantities. In this way, all paths traced by Algorithm 1 are effectively
shared to calculate derivatives with respect to all scene parameters.

Homogeneous media. Our derivations in §4 and §5.1 enjoy the
generality for handling heterogeneous media with spatially varying
radiative transfer parameters ot, 05, and fp.

On the other hand, for homogeneous media with 7-invariant
parameters, Vos = Voy = 0, causing (i) f = 0 for Lines 7 and 20 of
Algorithm 1; and (ii) L™ and 1L in Egs. (30) and (37) to become:

190, ) = 7L [1¢(x0, ) — D oy LE(x0, )] , (43)

L(l)(x, w) = /OD e 9T g [S(x’, @) dr +
. . A (44)
e oD [Lg(xo, w)+D (0'5 L™ (x9, ) — ot Lg(xo, w))] .

Computational efficiency. Since our estimator is built upon ordi-
nary Monte Carlo (OMC), it has a theoretical convergence rate of
O(1/¥/N) with N being the number of (main) sample paths. In prac-
tice, because of the additional side paths needed to be traced in each
iteration for estimating AL and L™, Algorithm 1 is significantly
more expensive than conventional VPT by having a time complex-
ity of O(K?), as opposed to O(K), for each sample path of length K.
Designing new Monte Carlo estimators of scene derivatives with
better performance is an exciting future research direction.

6 RESULTS

We implemented Algorithms 1 and 2, as well as Algorithms 3 and 4
in Appendix B, on the CPU in C++ using the Embree ray tracer.

Performance. As discussed in §5.3, unbiased and consistent esti-
mations of radiance derivatives are significantly more expensive
than those of radiance values due to the need to trace side paths. In
practice, our estimation of a single derivative runs about 10x slower
than conventional volumetric path tracing for radiance estimation
(with the same number of samples per pixel). Fortunately, as our
method allows multiple derivatives to be estimated jointly, the amor-
tized overhead for multiple parameters is much lower. For example,
when computing derivatives with respect to 10 scene parameters,
our method is only 2X slower than handling one parameter.



(a) Orig. image

(b1) Ours (c1) FD

(d1) Abs. diff.
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(b2) Ours (c2) FD (d2) Abs. diff.

Fig. 10. Equal-time comparisons between derivatives estimated by (b) our method and (c) finite difference (FD) with respect to two distinctive scene
parameters: (b1-d1) vertical displacement of the area light and the cube; (b2-d2) horizontal displacement of those objects. Pixel intensities of the derivative
images are encoded in false colors using the same color map as Figure 8. The FD results on the first row use a larger spacing (0.1) and suffer from high bias
(see the insets on the bottom left); those on the second row use a smaller spacing (0.01) and have high variance while still being biased (as shown by the insets
on the bottom right). Our technique, in contrast, produces cleaner and unbiased derivative estimations.

Table 2. Optimization configurations and performance statistics for the
inverse-rendering examples. Time is measured in CPU core minutes per
iteration.

Scene #Param. # Iter. Time
Teaser (Fig. 1) 2 110 22
Glass (Fig. 11) 4 80 12.2
Camera (Fig. 11) 3 220 9.3
Reflector  (Fig. 11) 9 200 23.6
Shadow (Fig. 12) 2 60 7.6
Multilayer (Fig. 12) 3 50 31
Spotlight  (Fig. 13) 12 110 112
Logo (Fig. 13) 101 100 27.2

6.1 Validation & Evaluation

To validate our derivations and implementation efficiency, we com-
pare radiance derivatives estimated in equal time with our method
(Algorithm 1) and finite difference (FD).

Figure 10 shows an example using the same Cornell-box-like
scene as Figure 8. As a comparison, columns (b1) and (c1) both
display derivatives with respect to the vertical displacement of the
light and the cube,® resulted from our method and FD, respectively.
Columns (b2) and (c2), on the other hand, visualize derivatives with
respect to the horizontal displacement of those objects.

In both cases, FD results obtained with larger spacing (top) suffer
from severe bias around object boundaries. Those with smaller
spacing (bottom), on the contrary, suffer from higher noise while
still being biased. Our technique is capable of producing much
cleaner and unbiased derivative estimations.

For more validation results, please see the supplemental material.

®Compared to Figure 10, our derivatives images in Figure 8 do not show “edges” around
moving objects since each pixel in those images corresponds to the derivative of one
radiance value (as oppose to integrated radiances over the pixel).

6.2 Main Results

We now show inverse rendering results using gradients estimated
with our approach. All these examples involve participating me-
dia/translucent objects and changing scene geometry, making pre-
vious methods inadequate.

In these examples, we take a target image 78 a5 input and
search for scene parameters " that minimize the difference be-
tween the target and the rendered image 7 () generated using
these parameters. Namely,

" = arg min,; ||.Z'(7t) - Itarget”. (45)

In practice, we choose the norm || - || as the L, difference between
Gaussian pyramids of the corresponding images’. We use the Adam
method [Kingma and Ba 2014] to drive the gradient-descent pro-
cesses. Please refer to Table 2 for the performance numbers and
optimization configurations, and to the supplement for more results
and animated versions of Figures 1, 11, 12, and 13.

Generic inverse rendering. Figure 1 illustrates an inverse render-
ing example where the pose of a light-emitting dodecahedron is
optimized. From an initial configuration (a) that is quite different
from the target (d), the optimization driven by derivatives estimated
with our method (b) manages to find the global optimum in 110
iterations, as demonstrated by the parameter difference plot. Note
that the optimization loss does not go to zero as noisy derivatives
are used for faster iterations.

We show three more examples in Figure 11. The top row contains
an example with an apple inside a cube with an absorbing medium
and a rough dielectric interface. We jointly optimize the location
of the apple inside the cube as well as the surface roughness of the
cube itself. The second row of this image shows an example where
the camera position and pose are optimized. The last row has an
7Our technique can be used with any differentiable metric, and we formulate the
inverse rendering problem using the Ly norm for its simplicity. Additionally, the norm

is calculated based on Gaussian pyramids to make the optimization less prone to local
minima. This, however, does not guarantee the optimization to be convex in general.

ACM Trans. Graph., Vol. 38, No. 6, Article 227. Publication date: November 2019.



227:12 .

Iter #0 Iter #10 Iter #40

Iter #0 Iter #30 Iter #110

Iter #0

Iter #50

Iter #100

Zhang, Wu, Zheng, Gkioulekas, Ramamoorthi, and Zhao

Opt. loss (log) Parameter diff.

40

20

0
0

0 50

Iteration #

50

Iter #80 Iteration #

t. loss (log 6 Parameter diff.
12.5
100 4
.5
7 2
50
2.5 0
0 200 0 200
Iter #220 Iteration # Iteration #

Opt. loss (log
0.6

Parameter diff.

0.4

0.2

0.0
200 0

Iteration #

200

Iter #200 Iteration #

Target

Fig. 11. Inverse rendering results obtained using gradients estimated with our technique (Algorithm 1). Please see the supplemental material for extended

versions of these results visualizing the full optimization processes.

example where the camera looks at a smoke indirectly through a
glossy triangular reflector. We optimize the 3D locations of each
vertex of the reflector separately.

Imaging-inspired examples. In Figure 12, we show two examples
inspired by real-world imaging problems. On the top of this figure,
we show an example where a heterogeneous medium casts a colored
shadow onto the ground. We optimize for the orientation as well
as the optical density (as a global scaling factor) of this medium
jointly by only looking at the shadow, mimicking a non-line-of-
sight (NLOS) imaging scenario [Xin et al. 2019; O’Toole et al. 2018;
Saunders et al. 2019; Velten et al. 2012]. Using gradients estimated
with our method, the global optimum is reached within 60 iterations.

The bottom of Figure 12 shows an example where an object is em-
bedded within a two-layer material modeled after human skin using
measured properties [Collier et al. 2003; Walker et al. 2003; Chang
et al. 2009]. We search for the location of the object, a common
problem in biomedical imaging. Optimization with our estimated
derivatives converges to the global optimum in 50 iterations.

Design-inspired examples. Figure 13 contains two examples in-
spired by design applications using arbitrary images (i.e., not 3D
renderings) as input. On the top of this figure, we show an example
where the orientations and colors of two small spotlights are jointly
optimized. The input to this example is a simple drawing of the
light beams. On the bottom is an example containing micro-scale
translucent grains. We jointly optimize for the colors (i.e., single-
scattering albedo) and physical sizes of these grains (in clusters) so
that their macro-scale appearance matches the input image (i.e., the
SIGGRAPH logo).
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7 DISCUSSION AND CONCLUSION

Limitations and future work. Our derivations rely on a few sim-
plifying assumptions stated at the start of §4. Although some of
them (e.g., no zero-measure light source) are relaxed in the supple-
mental material, others require more sophisticated algorithms to
handle. For instance, with ideal specular surfaces, discontinuities
of the radiance L(x, @) in @ need to also include mirror images of
the geometric edges, which can be nontrivial to identify. Also, to
support media where the transmittance is non-exponential, some
of our derivations will need to be adjusted.

Another exciting direction for future research is to improve the
computational efficiency of our Monte Carlo estimator (Algorithm 1).
Developing more sophisticated estimators (e.g., those analogous to
bidirectional path tracing) is an interesting future topic and necessi-
tates the establishment of a path-integral form of Eq. (32).

Conclusion. We introduced a differential theory of radiative trans-
fer by showing how the radiative transfer equation (RTE) can be
differentiated with respect to arbitrary scene parameterizations. To
this end, we derived the derivatives for individual terms of the RTE
given by the transport, collision, and interfacial scattering operators.
Our theory enjoys the generality to handle a large variety of radia-
tive transfer phenomena including volumetric absorption, single and
multiple scattering, anisotropic phase functions, and heterogeneity.

To numerically estimate these derivatives, we presented an un-
biased Monte Carlo method analogous to volumetric path tracing
(VPT) to compute scene derivatives of interior and interfacial radi-
ances. Our technique symbolically differentiates contributions of
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A DETAILED DERIVATIONS
A.1  Deriving 0, Kt Kc L (16)
According to Egs. (2) and (5),
(Kr K L)(x, ) = jOD T(x’, x) o5(x’) L™ (x’, @) dr, (46)

where x’ := x — rw. The assumptions stated at the beginning of §4
ensure that the integrand T o5 L™ is continuous in 7 for 0 < 7 <
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Fig. 14. Calculating the change rate of w’ defined as the unit vector pointing
from y to x.

D. Thus, applying Theorem 1, which reduces to Leibniz’s rule for
differentiation in this case, to Eq. (46) gives

(O Kr Kc L) (x, ) = /OD O [T(x’, x) o5(x") L™ (x", )] dr

. . (47)
+ D T(xp, x) o5(x0) L"™(x0, @),

where xy := x — Dw. Further, the derivative of the transmittance
T(x’, x), which we derive in Appendix A.2, equals

T(x’,x) = =T(x", x) Z4(x, w, 7). (48)

Lastly, combining Egs. (47) and (48) yields Eq. (16) in §4.1.

A.2 Differentiating Transmittance

Multiple terms we derived in §4 involve the derivative of the trans-
mittance between two points x and x — tw in the medium given
by

T(x — tw, x) = exp (— /Ot ot(x — Tw) dl') . (49)
Applying Theorem 1 to this equation leads to
T(x - tw,x) = O exp (— fot ot(x — Tw) dr)

=-T(x —tw,x) 0 fot ot(x — rw)dr (50)
= -T(x — tw, x) Ci(x, w, t) + { or(x — tw)),

where 3 is defined in Eq. (17) as Z¢(x, w, t) = /Ot Gt(x — rw) dr.

A.3  Deriving the Change Rate of w’ (25)

Let x and y be two 3D locations. Then, the change rate of @’ :=
(y — x) with respect to a scene parameter 7z can be calculated as
follows (see Figure 14): (i) project (y — x) to the surface of a unit
sphere centered at x, yielding (§—x)/|ly—x||; (ii) invert the projected
velocity to align it with @’, yielding (x — y)/|ly — x||; (iii) take the
component (illustrated in red) of the inverted velocity that is within
the tangent plane at ’, yielding &’ expressed in Eq. (25).

A.4  Evaluating AL Defined in Eq. (26)

Given a point x interior of the medium, the discontinuities of L(x, @)
in w, in the absence of zero-measure light sources and ideal specular
surfaces, generally arise when @ = (y — x) with y located on one of
the boundary, silhouette, and sharp edges (as illustrated in Figure 5).
In what follows, we derive AL based on the type of edge on which
y resides.

A Differential Theory of Radiative Transfer « 227:15

Case 1. Boundary and silhouette edges can cause the following
discontinuities with respect to w:

e The distance D for the ray (x, —®) to hit the medium bound-
ary, which is involved in the transport operator Kt (2).

o The location xg = x — Dw where the ray intersects the bound-
ary, which is needed by the source term Q (6).

For each w where D and x( are discontinuous, let

D™ := lim D(x,w+en), D':= lim D(x,w+en), (51)
€e—0~ e—0*
where x~ := x—D”wand x* := x—D* w denote the one-sided limits

of D and xq (see Figure 15). Then, AL(x, ) is given by the difference
of the interior radiance L evaluated with D = D™, xp = x~ and
D = D", xo = x*. Precisely,

AL(x, ®)

[ T2 (Ke D', 0) dr + T, 0) L™, )| -

[ JP T %) (Ko L', @) dr + T(x*,x) L(x ™, w)] (52)

/;: T(x’, x) os(x’) LIS (x’, w) dr
+T(x,x)Ls(x~, w) — T(x*, x) Ls(x™, w).

Notice that it is possible for D¥ > D™. In this case, the integral from
D™ to D™ in Eq. (52) takes a negative value.

Case 2. Another type of L’s discontinuity in @ occurs when xg
lies on a sharp edge. In this case, the surface normal n at xp has jump
discontinuities (despite D and x( being continuous themselves). This
makes AL to be entirely determined by the difference of the source
term Q evaluated with the two different surface normals, denoted
asn~ and n™, from the two faces sharing the sharp edge. With the
volumetric emission L neglected, Q(x, @) = T(xg, x) Ls(x0, @) and

AL(x, w) = T(xg, x) ALg(x9, @)

= T(x0, %) ( foo Afs(x0, =0, @) Lxo, ') d’ + ALS(x0, @) 3)

where Afs and ALS denote the difference between the BSDFs and
emitted radiances evaluated with the normals n~ and n* (see Fig-
ure 16).

D+
-
/—)%
o
w @ w | ®
x w o2

Fig. 15. Calculating AL resulting from a silhouette edge. In this 2D example,
the orange triangle is translating upward with a constant velocity relative
to x (while the yellow box stays stationary), and its top vertex creates a
geometric discontinuity when viewed from x. Let @’ denote the direction
corresponding to this discontinuity (i.e., the ray (x, —®’) intersects the
orange triangle at its top vertex). Based on these observations, D™, D*, x~,
and x™* defined in Eq. (51) are illustrated.
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Fig. 16. Calculating AL resulting from a sharp edge. In this case, AL is
solely determined by the difference between the BSDF and the surface
emission at xg evaluated at the two normals n~ and n™, as expressed in
Eq. (53).

B DETAILS ON OUR MONTE CARLO ESTIMATOR

We now provide more details on the estimation of radiance change AL
and in-scattered radiance LS.

Estimating AL. Computing the edge integrals (Lines 14 and 26 of
Algorithm 1) requires estimating the change of radiance AL across
discontinuity boundaries (Line 5 of Algorithm 2).

Recall that the discontinuity of L, under the assumptions stated
at the beginning of §4, arises due to the geometric discontinuities re-
sulting from boundary, silhouette, and sharp edges (Figure 5). Based
on this observation, Egs. (52) and (53) derived in Appendix A.4 eval-
uate AL under two cases. These equations can further be estimated
using Monte Carlo integration, as shown in Algorithm 3.

Discontinuities caused by boundary and silhouette edges (52) are
handled by Lines 3-18 of Algorithm 3. Let D™ := min(D~, D)
and D" := max(D~, D*). Then, due to Eq. (52), it holds that

|AL(x, )|

far .
= fDIZ,ea, T(x’, x) o5(x”) L™(x’, @) dr + T(x™", x) Ls(x", ) (54)
= T(x", x) L (x"", ),

where x"€@" ;= x — D" and x™" := x — Dfre. After obtaining
|AL|, it is easy to verify that AL equals |AL| if D~ > DT and —|AL|
otherwise. Further, Eq. (54) can be estimated by tracing two side
paths: one for the first two terms on the RHS side (Lines 9-14) and
the other for the last term (Line 6).

Lastly, discontinuities caused by sharp edges (53) can be handled
by tracing only one side path, as shown in Lines 3-18 of Algorithm 3.

Estimating L™, To estimate L'"(x, ) given by Eq. (5) for interior
points x € Q \ 9Q and Eq. (20) for boundary ones x € 9Q, we
randomly draw a direction @’ according to the phase function at x
and estimate L(x, w’) or Ls(x, ®”) using standard volumetric path
tracing. Algorithm 4 contains the pseudocode for this process.
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Algorithm 3 Monte Carlo estimation of AL

1: function DELTARADIANCE(X, X, @, ®)
2 if @ corresponds to a boundary/silhouette edge then » (52)
3 Calculate D™, D" using Eq. (51)
4 D™  min(D™, D), D' « max(D~, D*)
5: X0 e — Do, xfT — x — Dy @
6 AL «— —Lg(x™, w) > side path
7 Draw free-flight distance 7 from x"®" with direction @
8 T« 7+ D"
9 if 7 < D then
10: X —x-t0
11: AL — AL + Z:E;,g INSCATRADIANCE(X', @) » Alg. 4
12: else
13: AL — AL + Lg(x", o) > side path
14: end if
15: AL «— T(x™, x) AL
16: if D~ < D* then
17: AL «— —AL
18: end if
19: else > (53)
20: Calculate n~ and n*
21: AL « L&(xp, 0 | n7) — L(x0, @ | n*)
22: Draw @’ with probability p(w”)
23: Afs — fs(xp,—0’ 0 | n7) — fs(xp, —0’, @ | n%)
24: AL « AL + Lg(x, 0") Afs/p(w0”) > side path
25: end if
26: return AL
27: end function
Algorithm 4 Monte Carlo estimation of LiPS
1: function INSCATRADIANCE(x, @)
2 if x € Q\ 0Q then > (5)
3 Draw @’ ~ fp(x, @', @)
4 IS  L(x, w’) > side path
5 else > (20)
6 Draw o’ ~ fo(x + e 0, —0’, ) >e— 0F
7 if (n(x), ®’) > 0 then
8 LS  L(x, w’) > side path
9: else
10: IS  Lo(x, @) > side path
11 end if
12: end if

13:

return L'

14: end function
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