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ABSTRACT

Analysis of Confocal Laser Scanning Microscopy (CLSM)
images is gaining popularity in developmental biology for
understanding growth dynamics. The automated analysis of
such images is highly desirable for efficiency and accuracy.
The first step in this process is segmentation and tracking
leading to computation of cell lineages. In this paper, we
present efficient, accurate, and robust segmentation and track-
ing algorithms for cells and detection of cell divisions in a
4D spatio-temporal image stack of a growing plant meristem.
We show how to optimally choose the parameters in the wa-
tershed algorithm for high quality segmentation results. This
yields high quality tracking results using cell correspondence
evaluation functions. We show segmentation and tracking re-
sults on Confocal laser scanning microscopy data captured
for 72 hours at every 3 hour intervals. Compared to recent
results in this area, the proposed algorithms provide signifi-
cantly longer cell lineages and more comprehensive identifi-
cation of cell divisions.

Index Terms— shoot apical meristems, stem-cell, cell
segmentation, cell tracking

1. INTRODUCTION

Proper understanding of the causal relationship between cell
growth patterns and gene expression dynamics is one of the
major topics of interest in developmental biology. Informa-
tion such as rates and patterns of cell expansion play a critical
role in explaining cell growth and deformation dynamics. The
need for quantification of these biological parameters is im-
portant to biologists. However manual analysis is extremely
tedious because of the high dimensionality and complexity of
data.

The subject of this study, the shoot apical meristems
(SAMs) also referred to as the stem-cell niche, is the most
important part of the plant body plan because cells for all the
above ground plant parts are supplied from it. At the same
time, the size of the stem-cell niche remains stable in spite of
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Fig. 1. Example of three images at three time instants. Ar-
rows show same set of cells at time points noted on each
panel.

a continuous displacement and diversion of cells into a differ-
entiation program. Understanding this dynamics is a major
research thrust for developmental biologists. In this paper,
we focus on studying the developing plant meristem with the
goal of obtaining very accurate segmentation and tracking.
Confocal laser scanning microscopy is used to observe given
set of SAMs labeled with plasma membrane localized yel-
low fluorescent protein (YFP), repeatedly for about 3 days
by taking serial images at every 3 hour intervals. At each
time point, multiple images are obtained at different depths.
Each stack from all time points is registered by method of
maximization of mutual information [1, 2]. As a result, the
images taken from different time points but at the same slice
are registered. Fig. 1 shows an example of the time lapse
images. To keep the plant alive for a long period of time, it
is necessary to limit its exposure to the laser. This results in
poor image quality. This presents significant challenges to
image analysis since the segmentation and the tracking needs
to be robust to the poor image quality.

Of late, there has been some work on automated process-
ing of such time lapse images in both plants and animals. The
multiple-level-set approach is an active-contour based algo-
rithm, which simultaneously segments cells and also tracks
them [3, 4]. However, this method is not suitable for tracking
of SAM cells. The method in [5] presents an approach for cell
segmentation, but has not been applied to plant cells. In [6]
Softassign Procrustes algorithm was used to compute cell lin-
eages, and to detect cell divisions, but its application to plant
cells is limited. A recent work [7] addressed the problem of
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Fig. 2. The detection of cell boundaries varies with the dif-
ferent values of watershed threshold h. First image is the raw
input image. Over-segmentation using watershed is shown in
the middle image, and under-segmentation in the right most
image.

tracking in plant cells and especially the issue of robustness
of the trackers. However, they assumed an existing level-set
based segmentation method and their performance suffered
due to poor quality of the segmentation in many images.

In this paper, we propose a single framework that entails
segmentation and tracking of plant cell images. Section 2 and
Section 3 detail these two parts of the algorithm. Section 4
describes the experiments and results of our methods.

2. SEGMENTATION

The authors in [7] used a level set algorithm for segmentation.
Since the input raw images have low signal to noise ratio in
the periphery and also in the central regions of the plant stem,
the segmentation results of this work are of poor quality.

We used watershed transformation [8] to segment cell
boundaries. Watershed treats the input image as a continu-
ous field of basins (low intensity pixel regions) and barriers
(high intensity pixel regions), and outputs the barriers, which
are the cell boundaries of all the cells in the image. Prior
to applying the watershed algorithm, the input image from
the confocal microscope undergoes low pass filtering. This
Gaussian filtered image is further processed using H-minima
transformation in which all the pixels below a certain thresh-
old percentage h are discarded. These two steps minimize
the effects of noise in our segmentation. The threshold value
h plays a very crucial role in the watershed algorithm. Gen-
erally, a higher value of the threshold parameter h performs
under-segmentation on the image, and inversely a lower value
over-segments it, as shown in Fig. 2. Moreover, if the input
image is very noisy, then it becomes extremely important
to choose an appropriate threshold value such that only the
correct cell boundaries are detected by watershed. One of the
main contributions of this paper is a quantitative metric to
evaluate the “correctness” of the segmentation. We observe
that the area of all the cells in a plant is almost uniform in the
image. Thus watershed should ideally produce a segmented
image that contains similar sized cells. We use variance in
the area of the cells as a metric to measure correctness of seg-
mentation. Thus, the value of h should be chosen such that

Figure X:  The graph shows the watershed threshold in the X axis, and the variance in the 
areas of the segmented cells in the Y-axis. Image A shows the input raw image, while 
images B, C, and D show the segmentation results for different values of $h$. Notice 
that image B shows over-segmentation and image D shows under-segmentation. The 
correlation between the minimum variance in the areas of the cells and appropriate  
segmentation is clearly demonstrated in image C. 
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Fig. 3. The graph shows the watershed threshold h in the
X axis, and the variance in the area of the segmented cells
in the Y-axis. Image A shows the input raw image, images
B, C, D show the segmentation results for different values of
h. Image B shows over-segmentation, image D shows under-
segmentation. The correlation between the minimum vari-
ance in the areas of the cells and appropriate segmentation is
clearly demonstrated in image C.

variance of area in the segmented image is minimum. Since
it is a quantitative metric, the optimal value of h is found
automatically without manual intervention. The appropri-
ateness of this metric is also verified through the successful
use of these segmented images in tracking with significantly
improved results.

Fig. 4. Raw image in the first column is segmented using
both watershed and level-set segmentations. Second column
displays watershed segmentation, while the third column is
the result of level set segmentation. Qualitatively, watershed
far surpasses level-set segmentation as demonstrated in this
figure.

Figure 3 illustrates the automatic evaluation of h for the
given sample image. The segmented image obtained after wa-
tershed segmentation is a binary image.
Comparison with [7]: Since the tracking algorithm uses cell
properties such as area of the cell and its centroid, it is im-
portant to retain the shape and structure of cells in the seg-
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Fig. 5. Image A: The matched local graphs G1 at t and G2
at t + 1 time points, the correspondence of the seed cell pair
(1,1’), as well as the correspondences of the neighboring cells,
such as (2,2’) and (4,4’). Image B: A diagram to describe the
relative position of the mother cell and the daughter cells.

mented images. In a noisy image, level-set method fails to
preserve these cell properties, which leads to incomplete or
faulty tracking of cells. On the other hand, watershed seg-
mentation algorithm finds the geometry and other observed
properties of the plant cells more accurately than the level-set,
thus producing significantly better correspondence results in
tracking (see Fig. 4).

3. TRACKING STEM CELLS

Graphical abstraction is created on a collection of cells in an
image. In this process every cell is characterized by a ver-
tex in the graph and neighboring vertices are connected by
an edge. The structure of these graphs automatically contains
the relative distance between two neighboring cells (the edge
length) and the edge orientation. The topology and the ge-
ometry of the local graphs should not change if there is no
cell division or the images are not noisy. Taking into account
above conditions, the correspondences between cells are iden-
tified by matching the local graphs (Fig. 5 (A)). To find a
correspondence between cells ci and cj across different time
instants t and t + 1, the distance measure between two local
graphs is defined as follows:

DL(ci, cj) =∑
cki
∈N(ci),ckj
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where cki is a neighboring cell of ci, and ckj is a neighbor-
ing cell of cj , N(c) is the neighboring cell set (set of cells
that are within a certain distance around cell c), lcki

,ci
(t) and

lckj
,cj

(t+1) are the edge lengths, θcki
,ci

(t) and θckj
,cj

(t+1)
are the orientation angles in radians of the edges measured rel-
ative to a horizontal axis, Pci(t) and Pcj (t + 1) are the cell
position vectors, and ∆ is the average distance between two
neighboring cells. If two local graphs match, which is when
the distance measure is small, we can say that the central cells

Fig. 6. Growing cell correspondences from a seed to its neigh-
bors. The first column denotes the seed cell pair, the middle
column denotes the tracking results after the first step of the
recursion of growing the correspondences, while the third col-
umn denotes the tracking results after the second step. The
same color shows the matched cells.

ci and cj are a corresponding cell pair. Overall, tracking of
stem cells from any two consecutive cell image stacks using
local graph matching [7] consists of the following parts: find-
ing the seed cell pairs, finding the correspondences of the
neighboring cells from the seed pairs across time (Fig. 6),
and detecting cell divisions (Fig. 5 (B)). Formal description
of each procedure is described in [7] in depth.

4. EXPERIMENTAL RESULTS

Raw images segmented using watershed improves temporal
tracking dramatically. Cell division largely depends on faith-
ful detection of cell boundaries in the raw image. Because
watershed produces faithful segmentation, there are less false
positives as compared to level-set. We have tested watershed
segmentation and tracking on different datasets of SAMs. The
experimental results are shown on images obtained from plant
cells and observed for 72 hours taken at every 3 hour intervals.
Watershed segmentation is applied on images taken from all
24 time points at the same depth level. Then tracking is run
on every 2 consecutive segmented images to get information
about the cells such as cell lineage, division, area. Fig. 7
compares the results of temporal tracking with level-set and
watershed segmentation. Biologists manually verified the ac-
curacy of segmentation results by watershed algorithm. Also
in order to verify the overall improvement of the proposed
algorithm we do comparison of watershed with level-set al-
gorithm.

The number of correctly tracked cells obtained from
tracking images in consecutive time points for some period of
time is compared in Table 1. The comparison is done on the
different datasets and we can see significant increase in the
number of tracked cells obtained from watershed segmenta-
tion.
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Fig. 7. Improvements in temporal tracking using watershed segmentation. Top row shows temporal tracking using level-set
segmentation, whereas the bottom row is obtained using watershed segmentation. Cells are tracked for 24 hours. The same
color denotes the same cell.

Table 1. Sum of the number of cells being tracked from wa-
tershed segmentation data and level-set segmentation data

Dataset Time (h) Watershed
segmentation

Level-set
segmentation

Dataset1 72 2052 (%90) 1630 (%71)
Dataset2 36 491 (%71) 215 (%31)

One of the important data to obtain is the lineage of a cell.
Table 2 shows the comparison of average cell lineage lengths
between watershed and level-set algorithms and confirms that
watershed segmentation improved those results too.

Table 2. Average lineage length

Dataset Watershed
segmentation

Level-set
segmentation

Dataset1 50 25
Dataset2 42 6

5. CONCLUSION

In this paper we proposed a novel algorithm for plant cell seg-
mentation using watershed transformation. Specifically, we
proposed a new metric for this application to find the optimal
threshold parameter automatically. We show improved results
of temporal tracking of cells using the proposed segmentation
when compared to recent earlier results of segmentation that
uses level set functions. This we believe will significantly
benefit the plant biologists to find correct lineages of cell di-
vision and death for a more accurate statistical evaluation of
plant growth.
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