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We present a system that superimposes multiple projections onto an object
of arbitrary shape and color to produce high-resolution appearance changes.
Our system produces appearances at an improved resolution compared to
prior works and can change appearances at near interactive rates. Three
main components are central to our system. First, the problem of computing
compensation images is formulated as a constrained optimization which
yields high-resolution appearances. Second, decomposition of the target ap-
pearance into base and scale images enables fast swapping of appearances
on the object by requiring the constrained optimization to be computed only
once per object. Finally, to make high-quality appearance edits practical, an
elliptical Gaussian is used to model projector pixels and their interaction
between projectors. To the best of our knowledge, we build the first system
that achieves high-resolution and high-quality appearance edits using mul-
tiple superimposed projectors on complex nonplanar colored objects. We
demonstrate several appearance edits including specular lighting, subsur-
face scattering, inter-reflections, and color, texture, and geometry changes
on objects with different shapes and colors.
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1. INTRODUCTION

The ability to change the appearance of a physical object in order
to create entirely different appearances is intriguing and has been a
goal of computer graphics and augmented reality. Appearance edit-
ing impacts several applications including cultural heritage, product
design, entertainment, and architectural relighting.

1.1 Background

Appearance edits can be achieved by using digital projectors to
project carefully controlled light onto an object. Three issues are
important when considering such appearance changes:

(i) the geometric (planar or nonplanar) and photometric (white or
colored) properties of the object,

(ii) the number of projectors used, and

(iii) the configuration of the projectors which in turn decides the
quality or resolution of the appearance achieved.

Earlier works on appearance editing have addressed complexity in
only a few of the preceding aspects. For example, Raskar et al.
[2001] presented a system for augmenting custom-made white-
colored objects with colored imagery. When multiple projectors
were used, they were configured to have little overlap in their
fields-of-projection (e.g., 10% overlap). The projected images were
geometrically registered across the overlap regions between the pro-
jectors. To hide unwanted color inconsistencies from projector to
projector, the overlap regions were feathered to create a smooth
transition between the imagery illuminated by adjacent projec-
tors. However, no explicit photometric calibration was performed.
Bandhopadhyay et al. [2002] extended the approach to provide an
interactive painting application and Okazaki et al. [2009] included
a high-quality geometric acquisition method.

Many single projector editing systems exist (e.g., Nayar et al.
[2003], Grossberg et al. [2004], Grundhöfer and Bimber [2006],
and Wetzstein and Bimber [2007]), however, a single projector is
fundamentally inadequate for handling objects of arbitrary shape.
Even if the projector is optimally placed, some projector pixels will
inevitably illuminate the object’s surface at grazing angles. In fact,
achieving the highest resolution provided by the single projector at
all points on the surface is impossible; in practice only a fraction of
the maximum resolution is achieved.

Multi-projector editing systems also exist (e.g., Raskar et al.
[2001], Bimber et al. [2005a, 2005b]), and this requires the projec-
tors to be registered with each other to create a seamless appearance
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Fig. 1. Fast high-resolution appearance editing. We model the light interactions between multiple projectors with superimposed fields-of-projection over a
surface of arbitrary color and geometry yielding fast, high-resolution appearance editing. All images shown are photos of objects visible by the naked eye.
(a, c) The physical objects. (b) A glossy appearance of the object in (a) (note: glossiness is a static appearance and not view-dependent). (d) A subsurface-
scattered marble appearance of (c). The resolution improvement achieved by our system: (e) one projector, traditional visual compensation and (f) our
multiprojector method. (g) Our appearance editing setup.

(e.g., Raskar et al. [2003]). The additional projectors provide sig-
nificant benefits. For example, the additional light radiance assists
in achieving more difficult appearance edits (e.g., editing on darker
colored surfaces), Bimber and Emmerling [2006] improved the fo-
cus and thus the quality of an appearance edit, and Aliaga et al.
[2008] used additional projectors to control the maximum amount
of light exposed to each surface point to minimize light exposure
to fragile artifacts. While these works are capable of working with
arbitrarily shaped objects, the issues presented by grazing angle
illumination remain unaddressed.

We observe that using multiple projectors with superimposed
fields-of-projection decreases the probability that a portion of the
object’s surface is illuminated only at grazing angles. In addition,
the presence of overlapping pixels from multiple projectors can
increase the resolution at head-on surface locations, allowing the
entire target appearance to be achieved with improved resolution,
not just at grazing angle locations.

Improving resolution or achieving super-resolution has been ad-
dressed in previous works. For example, Park et al. [2003] improved
resolution using temporally adjacent video frames. In the context
of improving resolution with superimposed fields-of-projection,
previous works have only dealt with planar white surfaces (e.g.,
Majumder [2005] and Damera-Venkata et al. [2009]). Both these
works addressed the issue of achieving a higher resolution than
that of a single projector. However, by limiting their work to pla-
nar surfaces, the grazing angle issue is mitigated. Majumder [2005]
showed theoretically that super-resolution on planar surfaces is not
feasible without changing the size of the pixels. Damera-Venkata
et al. [2009] showed that projector placements allowed limited con-
trol over the size of the pixels which can be exploited to achieve
higher resolution via superimposition of projectors. The resolution
of planar displays was doubled by superimposing 4–10 projectors.

Nonplanar surfaces pose an entirely different problem. As men-
tioned, superimposition from multiple projectors becomes neces-
sary to achieve the resolution of a single projector at grazing angle
areas. Further, nonplanar surfaces result in much greater variations
in the focal distance of the projectors, resulting in pixel blurs due to
the defocus during superimposition. Finally, while white surfaces
have an almost constant albedo, colored surfaces generally consist

of significant variation in surface albedos. In designing our method,
we consider the variations in pixel size, pixel blur, and surface albe-
dos while striving to minimize degradation from a single projector
resolution via superimposed multiple projectors. Thus, our content-
dependent method allows us greater leverage to custom optimize the
reduction of degradation in resolution in a spatially varying man-
ner based on the desired spatially varying resolution of the target
appearance.

Our appearance editing framework significantly advances the
State-of-the-art by simultaneously considering complexity in all
the aforementioned three aspects in order to achieve appearance
edits of much higher quality than that possible by any earlier work.
Our system achieves high-quality appearance edits on complex
nonplanar colored objects by using multiple superimposed
projectors (i.e., nearly 100% overlap of their fields-of-projection).

1.2 Approach Overview

We present an approach for using multiple superimposed projec-
tions to achieve fast high-resolution appearance editing (Figure 1).
By high resolution, we imply a new appearance achieved at a
resolution over the surface of the object that is higher than that
accomplished using a single projector. By fast, we imply changing
such appearances at nearly interactive update rates. We assume the
surfaces to edit are diffuse or near-diffuse with no inter-reflections
or other indirect illumination.

Our appearance modeling component uses a multi-projector light
transport matrix that models the influence of each projector pixel
on the camera image plane. The inverse of this multi-projector light
transport matrix provides the compensation images to be projected
to achieve a desired appearance. However, unlike a single projector
system, when using multiple superimposed projectors to improve
the resolution of appearance editing, there exist many possibilities
of how light can be illuminated from the projectors to create the
desired appearance. We model this problem as a large constrained
optimization and show that an optimal solution to this optimiza-
tion yields the best-quality appearance in the sense of producing
a smooth, artifact-free appearance at the highest resolution possi-
ble while being within the illumination capability of the projectors.
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The error metric we optimize provides a quantitative measure of
the proximity of our achieved appearance to the desired appear-
ance. Lastly, we include an accurate modeling process for individual
projector pixels.

Our acceleration component tackles the issue that the constrained
optimization system is huge, and solving such a large optimization
once for each desired appearance is impractical. Our solution is
to decompose the problem into two tasks: (a) a preprocessing task
that is performed only once per object-projector setup; and (b) a
fast runtime linear scaling task. The preprocessing task uses a
parallelized solver to compute a solution for a base appearance.
The computed solution is a base compensation image which,
when projected, creates the base appearance. Then, for every new
target appearance, the corresponding target compensation image is
obtained by scaling the base compensation image at runtime by a
scale image unique to the target appearance. This task only requires
per-pixel multiplication and division operations thus enabling fast
appearance edits at runtime.

1.3 Our Contributions

Succinctly, we present three main contributions.

—a formulation of high-resolution appearance editing as a con-
strained optimization whereby the constraints ensure the result-
ing solution is both feasible given the limited illumination ability
of the projectors and smooth despite the limited resolution of
the cameras and projectors and presence of acquisition noise and
error,

—an algorithm to make computing and using the constrained opti-
mization practical by decomposing the generation of new appear-
ances into a one-time constrained optimization precomputation
and a fast runtime linear scaling operation, and

—a projector pixel modeling process to accurately compute projec-
tor pixel properties (size, shape, center, and intensity distribution)
and to model their interaction amongst several projectors, all of
which are critical for our objective of high-resolution appearance
editing and are also useful to other projector-camera applications.

To demonstrate our approach, we perform several high-resolution
appearance edits and analyses on a variety of objects. Our ap-
pearance edits include adding subtle details to objects, performing
illumination changes, modifying object colors, simulating material
alterations (e.g., transforming an object to have subsurface scat-
tering, converting a diffuse object to one with a static specular
appearance), and quantitative and qualitative measurements of the
improvement in resolution. Altogether, the a priori acquisition and
modeling requires 2–3 hours. Generating a new target appearance
at runtime takes less than a second.

1.4 Article Organization

In the remainder of this article, we describe the main components
of our approach. Figure 2 shows a summary of our overall system
pipeline. In the order of importance, we first describe our a priori
computations for high-resolution appearance editing as a multi-
projector constrained optimization (Section 2); we assume that the
acquisition and pixel modeling steps are already completed. Then,
we describe our runtime computations for quickly generating target
appearances (Section 3). The acquisition and pixel modeling step
is of great importance since it models the scene, geometrically and
radiometrically calibrates the projectors, captures a multi-projector
light transport matrix, and performs accurate per-projector-pixel
modeling. The geometric and radiometric information is needed
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Fig. 2. System pipeline. A summary of our system pipeline.

in order to compute the necessary compensation images for a new
appearance. Radiometric calibration serves to model the differences
in color and intensity responses of the projectors and to linearize
their behavior for more accurate appearances. In Section 4, we
provide algorithm details about acquisition and pixel modeling.
Finally, we present implementation details (Section 5), examples
and analyses (Section 6), and conclusions (Section 7).

2. APPEARANCE MODELING

The goal of our appearance modeling component is to obtain a set
of projector compensation images that, when simultaneously illu-
minated on the object, produce a high-resolution visual appearance
as visually similar as possible to the target appearance. Our method
builds upon prior work on light transport and/or projector-camera
systems (e.g., Ng et al. [2003] and [Sen et al. 2005]) that use
light transport to capture the light interactions with the object and
then invert the light transport matrix T in order to calculate the
desired projector compensation images. However, we face two new
challenges.

—The light transport matrix T is very large. For example, for a
multi-projector system, the size of T is on the order of 107 rows
by 106 columns thus making computational efficiency to be of
prime importance.

—Inverting a multi-projector light transport matrix T that explic-
itly models overlapping projector pixels requires solving a con-
strained optimization with many potential solutions, each pro-
ducing of a set of compensation images yielding appearances of
varying quality. For a single projector, a unique pseudo-inverse
of T can be easily computed by bounding the intensity value of
each pixel between [0,1]; in practice, the intensity is then mul-
tiplied by the maximum pixel value, for example, 255. For the
multi-projector case, we must carefully constrain the problem so
as to arrive at an optimal solution, defined as a high-quality and
high-resolution appearance. To illustrate this, Figure 3 shows
a simple didactic example with several possible compensation
image solutions when using multiple projectors. The figure in-
tuitively shows that by using more projectors, a better solution
can be achieved than with any single projector (Figures 3(a)–
(g)). Further, the inversion of T must also take into account the
illumination capabilities of the projectors or a solution might
be computed that produces the target appearance but yields in-
tensities that cannot be projected (Figures 3(h)–(i)). In addition,
smoothness constraints are necessary to ensure the smooth ar-
eas of the target appearance appear as such; else the computed
intensities will have unnecessary undulations (Figures 3(j)–(k)).
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Fig. 3. Multiprojector constrained optimization. (a) Target intensities to
achieve across an appearance. (b) Maximum surface illumination intensities
from one projector. Each hump represents one projector pixel across the
surface. (c) Reconstruction of (a) (dotted) using (b) and appropriate projector
intensity values. (d) Maximum surface illumination intensities from a second
projector which, in this example, is positioned at a different orientation
relative to the object that yields smaller projected pixels. (e) Reconstruction
of (a) using both projectors. The reconstruction is more accurate than (c)
and also more accurate than using only the second projector. (f)–(g) Smooth
projector intensities for the two projectors to achieve (e). (h)–(i) Without
illumination constraints, intensity scales can overflow or underflow (in red)
but theoretically still produce (e). (j)–(k) Without smoothness constraints,
projector intensities may produce noise, shown as intensity undulations.

Our described method supports full RGB color, but for clarity we
express our techniques for a single channel. Extending to RGB
implies repeating the same calculations for three independent chan-
nels. Spectral overlap between the color channels of the projectors
and the camera is handled by the radiometric calibration.

2.1 Light Transport

The light transport T between N projectors of resolution p × q and
a camera of resolution m × n is modeled by a mn × Npq matrix
(e.g., Ng et al. [2003], Sen et al. [2005]). Mathematically, this is
expressed as

C = T P, (1)

where P is a Npq× 1 vector sequentially representing the pixels of
all projectors and C is a mn×1 vector representing the camera pix-
els. Given a target image Ct (i.e., the desired appearance as viewed
from the camera’s viewpoint), the target compensation image can
be expressed as

Pt = T +Ct , (2)

where T + is the pseudo-inverse of T (the pseudo-inverse is needed
since T is typically not square). Pt can then be partitioned into P
segments, each containing the compensation image for a projector.
A change in appearance can be obtained by replacing the target im-
age Ct with a new one which in turn produces the new compensation
image Pt needed to achieve the appearance.

2.2 Inverting the Light Transport Matrix

We formulate inverting the multi-projector light transport matrix T
as a constrained optimization problem. Sen et al. [2005] also used
light transport but did not require T ’s inversion. Instead, they exploit
Helmholtz reciprocity to change the viewpoint from the camera to

that of the projector by transposing the light transport matrix T . The
work of Seitz et al. [2005] and of Wetzstein and Bimber [2007] is
more closely related to our work. Seitz et al. define a theory of in-
verse light transport to create inter-reflection cancellation operators
for removing the effects of inter-reflections and shadows from im-
ages. Wetzstein and Bimber invert the transport matrix of a single
projector for radiometric compensation assuming no (significant)
inter-pixel interaction. Further, since light transport is used, their
method supports inter-reflection and global illumination effects.
For these systems, only one way exists for assigning values to the
projector compensation image pixels. To clarify this, let vi ∈ [0, 1]
be the intensity value assigned for projector pixel i. Each vi is to
be scaled just sufficiently to match the target image at the camera
pixel which coincides with the projector pixel center. Hence, there
is a unique inverse to T which when multiplied by Ct produces a
unique compensation image Pt .

In contrast, when introducing pixels from one or more additional
projectors, there are multiple combinations of values for the vi’s
that can create an appearance better than that produced by a single
projector. To ensure the best quality, we need to find vi’s which
minimize the difference between the achieved appearance and the
target high-resolution appearance. Hence, computing T + is an op-
timization. Formally, let Et = ||Ct − T Pt ||; minimizing Et yields
a high-resolution appearance that is closest to the target image Ct .

2.3 Illumination Constraints

For multiple projectors, the solution values vi must be constrained
to be within the acceptable [0, 1] range. In the case of a single
projector system, vi can be clipped to [0, 1] as a postprocess. This
clipping assures the best quality possible with a single projector
since no additional projectors can compensate for the error caused
by clipping. However, for multiple projectors, constraining is crit-
ical to avoid solutions that achieve optimality with vi’s outside of
a projector’s capability (e.g., underflowing and overflowing inten-
sities in Figures 3(h)–(i)). The ill effects that occur when ignoring
illumination constraints are shown in Figure 8. Thus, computing T +

now requires solving a constrained linear optimization with a solver
capable of constraining the solution vector (we use Matlab’s lsqlin
function which uses the reflective Newton method of Coleman et al.
[1996]).

2.4 Smoothness Constraints

Our constrained optimization also enforces adjacent projector pix-
els from the same projector that illuminate a uniform color region of
the target appearance to have similar compensation values. Consider
a local uniform intensity area of the target image. In general, there
are two solutions to achieve this appearance: (a) the color comes
from all of the projectors which sum up to the uniform color of the
target image, or (b) at some pixels one projector has a high contri-
bution but the projector has a low contribution at an adjacent pixel.
This second solution introduces unnecessary noise due to projector
intensity changes from pixel to pixel in a small local neighborhood,
exacerbating calibration errors. To remedy this situation, we intro-
duce smoothing constraints which assure (i) neighboring projector
pixels from any one projector have smoothly changing compen-
sation values if the corresponding area in the target image is also
smoothly varying, and (ii) if the target image has a sharp edge in a
local region, the compensation values for the corresponding neigh-
borhood in the projector compensation image need not be similar. In
essence, the weights of the constraints should be inversely propor-
tional to the difference of the intensities in the target image inspired
by the idea of bilateral filtering (e.g., Durand et al. [2002]).
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(f) projector scale images (Ps)

(e) base compensation images (Pb)

(d) scale image (Cs)

(c) base image (Cb)

(g) target compensation images (Pt)

(b) target image (Ct)

(a) physical object

Fig. 4. Base-scale decomposition. Given a particular object (a) and a target image (b), superimposed projections are used to alter the appearance of the object
to that of the target image. The target image is decomposed to a base image (c) and a scale image (d). The projector base compensation images (e) are computed
once using the base image. The projector scale images (f) are computed using the scale image. (e) and (f) are multiplied together to create the final target
compensation images (g) which are projected onto the physical object to create the target appearance. A photograph of the final appearance edited object is in
Figure 1(d).

To achieve this smoothness, we augment Eq. (1) with additional
linear equations (constraints). For any two adjacent projector pixels
j1 and j2, we add an equation αj2j2 (j1 − j2) = 0 to the system in
Eq. (1). The weight αj2j2 is defined as

αj2j2 = 1 − |τj1 − τj2 |
max(τj1 , τj2 )

(3)

and simulates an inverse bilateral filter. τ is the ratio of the target
image intensity to the observed intensity of the projector pixel. The
effect of using this constraint is illustrated in Figure 8.

3. ACCELERATING APPEARANCE GENERATION

While previous works have focused on reducing the acquisition time
and storage requirements of the light transport matrix T (e.g., Garg
et al. [2006], Sen and Darabi [2009], Wang et al. [2009]), our accel-
eration component focuses on improving the process of inverting T
so as to quickly generate the compensation image Pt for each new
target image. Our observation is that computing Pt can be decom-
posed into a pixel-wise multiplication and a computation of two
compensation images: (i) a base compensation image Pb computed
once per object, and (ii) a scaled compensation image Ps calculated
at runtime for each new appearance. Then, using only simple pixel-
wise multiplication we obtain an approximation to Pt at close to
interactive speeds on the CPU (and could be at real-time rates with
a GPU implementation). For our diffuse surfaces, the decomposi-
tion separates geometric components of the compensation into the
base image and reflectance components of the compensation into
the scale image.

3.1 Base-Scale Decomposition

Our method is based on decomposing any desired target image Ct

into a base image Cb, unique to an object-projector setup, and a
scale image Cs , unique to a target image. Thus, any target image Ct

can be expressed by

Ct = Cb ⊗ Cs, (4)

where ⊗ denotes a per-pixel multiplication operation. For the base
image Cb, we compute its corresponding base compensation image
Pb using Eq. (2) once a priori for the target object. Then, we seek
to quickly compute the corresponding projector-space scale image
Ps from the camera-space scale image Cs at runtime.

Each projector pixel of Ps is computed as a weighted sum of
camera pixels from Cs . We assume each projector pixel j contributes
light to a contiguous region of camera pixels Aj (defined by a 2D
elliptical Gaussian in Section 4) and denote the relative contribution
of each pixel in Aj (i.e., Ajk for k ∈ [1, |Aj |]) to Ps by the set of
weights wj = {

wj1, wj2 − wj |Aj |
}
. Each scalar value Ps[j ] (i.e.,

the scalar intensity value of the j ’th pixel of the projector-space
scale image Ps) is then computed as

Ps[j ] =
|Aj |∑
k=1

Cs[Ajk]wjk. (5)

If we consider the weights wj to approximately describe a normal-
ized Gaussian weighted kernel, then Ps is equivalent to a low-pass-
filtered version of Cs .

The target compensation image Pt is now approximated by Pa ,

Pt ≈ Pa = Pb ⊗ Ps, (6)

where Pb = T +Cb is the base compensation image. The advantage
of this decomposition is that we can precompute the base compen-
sation image Pb for an object. Then, for every new target appearance
C ′

t , we only need to multiply the base compensation image Pb with
a corresponding scale image P ′

s to achieve the desired appearance.
Figure 4 shows example images.

Different Cb base images provide different system capabilities.
For example, using a base image which exactly matches a target
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proj. pixels to solve extended proj. pixels unused proj. pixels solved proj. pixels extended, solved proj. pixels 

Rkl R(k+1)l

Rk(l+1) R(k+1)(l+1)

Rkl R(k+1)l

Rk(l+1) R(k+1)(l+1)

Rkl R(k+1)l

Rk(l+1) R(k+1)(l+1)

Rkl R(k+1)l

Rk(l+1) R(k+1)(l+1)

R’kl R’(k+1)l

R’k(l+1) R’(k+1)(l+1)

Fig. 5. Base compensation image computation. Our algorithm divides the projector pixels into four groups, each processed in parallel. In each step, one of
the projector pixel groups (in red) is solved. Yellow pixels are part of R′

kl. Blue pixels are unused and yet to be solved, Green pixels have already been solved,
and the grey pixels are pixels in R′

kl which are already solved.

appearance will yield a high-quality appearance edit for the given
target appearance, however, the solution may not be optimal for
different appearances. To achieve a target appearance with high-
resolution details (i.e., sharp changes), a base image containing
sharp changes everywhere may be used with the hope that many
of the sharp changes in the desired target experience are spatially
coincident with those of the base image; however, smooth target
appearances may suffer. Our informal experiments have shown that
a good compromise base image Cb for a variety of alterations is
an image that captures the surface albedo of the object without
significant illumination effects (e.g., only diffusely reflected light is
visible [Mallick et al. 2005], see Section 5 for details on acquiring
such an image). This base image contains sharp changes precisely
where the object albedo actually changes and thus ensures that
a good compensation can be computed in those regions. This is
beneficial to a target appearance (i.e., the smooth parts of the object’s
physical albedo are easy to change, so we worry mostly about
the boundary areas of the object’s albedo). Further, illumination
changes (with the exception of sharp self-shadows) are known to be
low frequency. Choosing an all-white appearance would be similar
in effect since a smooth transition would have to be computed at
albedo color edges.

Thus, our base-scale decomposition can yield visual accuracy
comparable to that using a constrained optimization for each unique
target appearance. Moreover, albedo changes (e.g., color/pattern
changes) can be performed as well (see Figures 1 and 12 for a
variety of strong albedo changes), and a base image which captures
the color edges of the albedo allow the optimization to improve
the appearance at these color edges. Nonetheless, the maximum
resolution achievable by albedo changes when using Pa is subject
to some resolution limitations (see Section 3.3).

3.2 Base Compensation Image Computation

To make computing the base compensation image Pb = T +Cb

practical despite the large size of T , we use a parallelized solver
to compute Pb. Our parallelized solver divides the camera space
into a grid, converting a single huge constrained optimization into
multiple smaller constrained optimizations, one for each grid cell.
The smaller constrained optimizations are then solved (with the
reflective Newton method of Coleman et al. [1996]) in a paral-
lel four-phase fashion. Visual artifacts are avoided by introduc-
ing constraints from adjacent grid cells when solving a grid cell’s

constrained optimization. Since we assume there are no indirect
illumination effects, no additional constraints are needed from non-
adjacent grid cells. The main steps of our solver are as follows.

(1) First, we divide the camera space image Cb into a K ×L grid of
disjoint rectangular regions. Each region Rkl , for k ∈ [1, K] and
l ∈ [1, L], is of width g and height h, containing Hkl = g × h
camera pixels. We typically let Rkl be 16 × 16 in size. Let
Gkl be the number of projector pixels from all projectors in
the setup whose centers lie inside Rkl . The rectangular regions
Rkl are extended by a fraction of g and h (e.g., 25%) to create
overlap between adjacent Rkl’s and are called R′

kl Let H ′
kl be

the number of camera pixels inside Rkl , where Hkl < H ′
kl . Let

the number of projector pixels whose center lies in R′
kl be G′

kl .
Since Rkl ⊂ R′

kl then Gkl < G′
kl . The extended R′

kl’s ensure
continuity of the values in the compensation image across the
boundaries of Rkl during optimization (Figure 5).

(2) Next, smaller sets of linear equations, one for each R′
kl , are

created from the large set given by Eq. (1). All the equations
involving the G′

kl projector pixels and H ′
kl camera pixels are

chosen to create a smaller system of equations,

Ckl = TklPkl . (7)

In the preceding equation, the sizes of Tkl, Pkl . and Ckl are
H ′

kl × G′
kl , Gkl × 1, and H ′

kl × 1 respectively. In the next step,
we solve these smaller systems of equations in parallel while
assuring continuity across boundaries.

(3) Lastly, the parallel solver works in four phases. In each phase,
the intensity values of projector pixels associated with K

2 × L

2
regions are computed in parallel. These R′

kl of alternate rows
and columns in the K × L grid are solved to assure that no
overlapping R′

kl’s are processed together. Solving a R′
kl region

finds the value of the compensation image at G′
kl projector

pixels, but only Gkl of these pixels belonging to Rkl ⊂ R′
kl are

taken as part of the final solution. When solving for the adjacent
region R′

(k+1)l in the next phase, values of the compensation
image at some of the G′

(k+1)l projector pixels in the boundary
of Rkl and R(k+1)l are already finalized. Hence, the equations
being solved in this next phase are much more constrained
in the overlapping boundaries than in the current phase. The
same pattern repeats in the subsequent phases when R′

(l+1) and
R′

(k+1)(l+1) are solved. In each phase the equations being solved
get more constrained, assuring continuity at the boundaries.

ACM Transactions on Graphics, Vol. 31, No. 2, Article 13, Publication date: April 2012.



Fast High-Resolution Appearance Editing Using Superimposed Projections • 13:7

3.3 Accuracy of the Decomposition

The base-scale decomposition opens up the question of accuracy:
how close is the result of using Pa to using Pt? To address this
question, we analyze the potential frequency content of the involved
images. In our discussion, the maximum frequency content of an
image that can be illuminated by a single projector is denoted as F
(e.g., for a projector of horizontal resolution 1024, F = 512).

Consider the case when a target appearance Ct has content with
a maximum frequency of F . When using a single projector, the ap-
pearance Ct can only be fully achieved on the subset of the object’s
surface that is head-on to the projection direction. In all other re-
gions, the high-frequency details in Ct are aliased (e.g., Figure 1(e)).
For most nonplanar objects, grazing angles are common, and the
maximum frequency content over these portions of an object is a
small fraction of F . In contrast, when using multiple projectors
with superimposed projections, the limitation in the maximum pos-
sible frequency is removed because of the additional illumination
directions (e.g., Figure 1(f)).

The compensation images Pa computed by our base-scale com-
position accurately yield a maximum frequency content of F and
thus can be used to significantly improve appearance editing reso-
lution as well as computation speed. Recall Pa = Pb ⊗ Ps . Pb has
the same maximum frequency content as Pt since it is obtained by
computing T + and multiplying with Cb; Cb in turn is bandlimited
by F , thus so is Pt . Also, Ps is bandlimited by F since it is created
in projector space using Eq. (5). Therefore, Pa is bandlimited by
F as would be Pt , and thus the base-scale decomposition can be
used to significantly improve the computation speed of multiple
appearances without sacrificing accuracy in the appearances.

However, Ct can theoretically have content with a frequency
higher than F since the camera’s resolution is usually higher than
the projector’s resolution (the frequency content is still limited by
the camera’s resolution, however). For surface locations that are
head-on illuminated by two or more projectors, Pt can theoretically
produce an appearance with frequencies higher than F but not
more than that possible by the combined sampling ability of the N
projectors. In this case, using the base-scale decomposition without
sacrificing accuracy requires the high-frequency content of Ct to
be shifted into Cb rather than leaving it in Cs . Then, the frequency
content of the appearance that is higher than F is transferred to
Pa via Pb, making Pt = Pa . If the high-frequency content is not
placed in Cb, the higher frequencies will be lost during the low-
pass filtering to create Ps and will result in aliasing artifacts. An
experimental validation is illustrated in Figures 12(e)–(f) (a proof is
also available in Appendix A). Since only a low resolution Cb allows
us to create a large number of different appearances quickly, this
shows that for target appearances that contain frequencies higher
than F , the full constrained optimization must be performed (i.e.,
Ct is used as the base image to compute Pt ).

4. ACQUISITION AND PIXEL MODELING

Our approach includes a comprehensive acquisition component to
model and calibrate the appearance editing stage. The digitization
and calibration methods are mostly based on previous methods.
However, a key distinguishing factor of our acquisition compo-
nent is an accurate projector pixel modeling method. Accurately
detecting projector pixel properties, such as pixel shape, center,
and intensity distribution as well as the overlap between projector
pixels, is critical for our objective of high-resolution, high-quality
appearance edits and for making high-resolution appearance edit-
ing feasible using off-the-shelf hardware. Since projector pixels

(a)

σx σy
θ

(x0, y0)

(b)

Fig. 6. Projector pixel modeling. (a) Projector pixels from an acquisition
pattern image used to estimate metapixel parameters. (b) Close-up of a
projector pixel on the camera plane and the five metapixel parameters to be
discovered.

may overlap with other projector pixels from the same projector
or from other projectors, a precise model that reflects the overlap
between pixels is important. If the amount of overlap is over- or
under-estimated, aliasing artifacts or excessive loss of contrast may
appear in the resulting appearance.

Contemporary work on projector-camera systems seeks a good
analytical model for representing projector pixels (e.g., Summet
et al. [2006], Yang et al. [2005]). Similar to Chuang et al. [2000] and
Ruzon and Tomasi [2000], our projector pixel modeling approach
is based on using 2D elliptical Gaussians to define metapixels, but
unlike those approaches we use 2D elliptical Gaussians to precisely
model the interaction of projector pixels across multiple projectors.
Our pixel modeling approach is useful for appearance editing and
also for other projector-camera applications.

4.1 Calibration and Light Transport

Prior to appearance editing, we perform a self-calibrating recon-
struction of the object (which also calibrates the poses of the pro-
jectors), compute a radiometric calibration, and sample the light
transport matrix. Our self-calibrating object reconstruction method
is based on the photogeometric structured-light method of Aliaga
and Xu [2009] which supports diffuse and mildly specular objects.
The projectors and camera are radiometrically calibrated using High
Dynamic Range (HDR) imaging techniques that also output the
camera transfer function [Debevec et al. 1997]. Further, to linearize
the projectors, we use the work of Raij et al. [2003].

To acquire the light transport matrix T , a set of patterns is illu-
minated from each projector onto the scene, and a camera captures
their projection (similar to Sen et al. [2005]). For these patterns,
a projector image is divided into regions of r × r pixels. In each
pattern, only one pixel in each region is turned on (to white). The
captured image for pattern i ∈ [1, r2] is denoted by Mi .

4.2 Projector Pixel Modeling

Projectors attempt to emit discrete (square) pixels, but due to
the relative orientation of the projector with respect to the local
surface normal and the local dispersion of light on the surface, the
appearance of a pixel projected on a diffuse surface on the camera
plane more closely resembles a blob of pixels with a smooth
fall-off (Figure 6(a)). We experimented with several pixel models
(Figure 8) and found elliptical Gaussians to be good estimates
of these metapixels. A metapixel is not a simple point but has
associated properties such as axes lengths, amplitude, position,
and orientation as defined by an elliptical Gaussian (Figure 6(b)).
Further, a metapixel exists in camera space instead of projector
space but is still indexed in the same way as projector pixels.
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Another advantage of our analytical modeling of projector pixels
is the improved ability to support the limited resolution of cameras.
For an ideal noise-free camera at the same distance from the object
as all projectors, the Nyquist sampling criterion states that a camera
resolution of double the horizontal and vertical projector resolu-
tion is sufficient to estimate the projector properties to subpixel
accuracy. However, when using consumer cameras, the presence of
noise cannot be avoided and thus a denser sampling is required. Our
experiments show that our model better estimates projector pixels’
properties and their overlap amounts, despite relatively coarse cam-
era pixel sampling, and obtains improved quality as compared to
simpler approaches.

4.2.1 Metapixel Acquisition. To capture the properties of the
metapixels, we exploit the patterns used to acquire the light transport
and also capture an image W of the scene as illuminated by an
all-white image. The intensity of the metapixels captured in image
Mi is related to the poses of the projector, camera, and surface as
well as the color and reflectance of the surface. Our initial modeling
goal is to accurately detect the blob in Mi corresponding to each
metapixel so that we can estimate its shape and location. However,
if the nature of the object’s reflectance makes the blob too dark, we
cannot detect it well. To remove the dependency on the intensity
of the surface reflectance, we divide each Mi by W . The resulting
intensity-independent pattern image M ′

i , has a normalized intensity
for every metapixel. In the following, we describe how to process
M ′

i to estimate the elliptical Gaussian for each metapixel.

4.2.2 Fitting Optimization. An elliptical Gaussian Ge(x, y) is
fitted to each metapixel blob in M ′

i . We compute the elliptical Gaus-
sian’s amplitude A, camera image center (x0, y0), orientation θ , and
standard deviations σx, σy along the ellipse’s two semi-axes. Since
M ′

i is intensity independent, we cannot estimate the elliptical Gaus-
sian’s amplitude A from this image. However, M ′

i is used to estimate
all other properties of a metapixel using a nonlinear least squares
optimization that minimizes

‖ Ge(x, y) − M ′
i (x, y) ‖2→ 0, (8)

where (x, y) is a camera pixel covered by the metapixel. To initial-
ize the optimization, we use the projector-camera correspondences
from the geometric calibration. These estimated properties are used
to detect the blob corresponding to the metapixel in W , and then A is
computed as a weighted average of the constituting pixel intensities
in W . Since each metapixel blob is nonoverlapping in each Mi , the
fitting optimizations for each metapixel are computed in parallel.

4.2.3 Metapixel Interaction. To accurately model the interac-
tion between metapixels, we use the multi-projector light transport
representation as described in Section 2. In this representation, the
matrix element T [u, v] corresponds to the response of camera pixel
u to the projected image of projector pixel v on the object sur-
face. To create T , we assign Gv

s (ux, uy) to matrix element T [u, v]
where Gv

s (·, ·) is the elliptical Gaussian function for metapixel v
and (ux, uy) are the camera coordinates of camera pixel u. Since the
metapixels may overlap each other in camera space, T encodes the
interaction between metapixels within and across different projec-
tors and is generally a sparse matrix. Our parallel solver described
in Section 3.2 breaks up T into multiple smaller matrices. While
these smaller matrices are relatively denser than T , they are still
sparse and benefit from our sparse constrained linear system solver.

4.2.4 Metapixel Regularization. To reduce noise in the sys-
tem, we exploit the fact that metapixels from the same projector
are uniformly spaced in the projector image. In general, errors are

present in the acquisition, calibration, digital cameras, and elliptical
Gaussian optimizations. To reduce noise, we use a priority-based
algorithm which ensures that the locations of the metapixels in the
camera image exhibit the expected local uniformity in their spa-
tial distribution. Consider metapixel j of a projector with estimated
center (xj , yj ). Even for a nearly parallel camera image plane and
projector image plane, the estimated metapixel locations computed
in Section 4.2.1 deviate from perfect uniformity due to accumulated
numerical errors. Our priority-based regularization algorithm regu-
larizes the spacing between metapixels by perturbing the estimated
(xj , yj )’s so as to improve their spatial uniformity with respect to
immediately adjacent metapixels from the same projector. The lo-
cal surface orientation and perspective foreshortening will make
the distances between immediately adjacent metapixels not per-
fectly equal; nevertheless, we found our approximation sufficiently
accurate to yield improved results.

This regularization method consists of the following steps, re-
peated for a number of iterations.

(1) First, we identify the estimated centers of the eight connected
neighbors of metapixel j in the camera image. Since we know
the projector pixel that corresponds to each metapixel, we can
obtain metapixel adjacency information directly from the pixel
position on the projector image plane.

(2) Next, we estimate the local uniformity in spatial distribution at
(xj , yj ) by computing the ratio ρj of the shortest to the longest
distance of (xj , yj ) from its neighboring metapixel centers in
the camera image.

(3) To prioritize the metapixels, we introduce a metric βj defined
as the change in ρj if metapixel j is moved from its current
location to the average location of its neighbors in the camera
image. Let ρ ′

j be this new ratio and βj = ρj − ρ ′
j . A positive

βj indicates an improvement in the local uniformity while a
negative βj implies a reduction in the uniformity.

(4) We place the metapixels in a max-heap. When the metapixel
with the largest βj is moved, the maximum benefit to achieve
local uniformity in the spatial distribution is provided.

(5) To perform the overall regularization, we follow a greedy op-
timization approach by removing a metapixel from the top of
the heap, moving its estimated center (xj , yj ) to the average of
the centers of its connected neighbors, and updating ρj for its
affected neighbors (e.g., all neighbors are also removed from
the heap, updated, and reinserted). This process iterates until
the largest βj is too small to provide any benefit or the heap
contains only negative βj ’s.

On rare occasions, some of the neighbors of metapixel j may not
be detected in the camera image due to the object’s reflectance.
In this case, moving the estimated metapixel to the average of the
centers of its neighbor might increase the size of the hole created
by the undetected neighboring metapixel(s). To avoid this situation,
metapixel j is connected to farther metapixels and the metapixel
is moved to a weighted average of the estimated centers of its
neighbors. The weights are inversely proportional to the distance
between the neighbors in the projector space. If the metapixel lies
on an edge or a corner (e.g., it is missing a row or a column of its
neighbors), the metapixel’s position is not adjusted. Figures 7 and
8 show the results of regularization.

5. IMPLEMENTATION DETAILS

System Setup. Our setup consists of three 1400 × 1050 Optoma
EP910 projectors and a Canon Digital Rebel XTi 10MP camera.
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Fig. 7. Regularization. (a) Before regularization, the metapixels have
nonuniform spacing. (b) After regularization, the metapixels have a more
uniform pixel spacing.

(a) (b) (c)

(d) (e) (f)

target 
appearance zoom-in

Fig. 8. Comparisons. (a) Computing a naı̈ve inverse light transport op-
timization results in artifacts. (b) A constrained optimization restricts the
pixel values to [0,1], but severe noise and graininess still exists. (c) Projector
pixel modeling using elliptical Gaussians is added for an improved image.
(d) Regularization is added to reduce noise. (e) Smoothness constraints
are added for a smooth, noise-free appearance. (f) Using quadrilaterals to
model projector pixels results in more noise due to inaccurate projector pixel
modeling.

The computer used contains four Dual core 3 GHz processors.
The camera-object distance is approximately 1m. The three projec-
tors are placed near the camera also approximately 1m away from
the object, oriented directly at the object to achieve superimposed
fields-of-projection (see Figure 1(g)). For one object, the total image
acquisition time is about 1 hour, the projector-camera calibration
process takes 10 minutes, the metapixel fitting optimizations com-
plete in 3 minutes per projector, and the constrained optimization
takes 1 hour. Once the base compensation image is computed, it
takes less than one second on the CPU to compute the target com-
pensation images for a new appearance.

Metapixel Estimation. For the Mi images, we use r = 16 yield-
ing 256 unique patterns. Metapixels typically span 10–40 camera
pixels. We ignore results for metapixels that converged to variances
or positions far from the initial guess. Such failures occur for pro-
jector pixels falling on a surface fragment at a large grazing angle
with respect to the camera or for sharp discontinues on the object’s
surface. In these cases we revert to the initial guess obtained from
the 3D model. The projector pixel still participates in appearance
editing, but its compensation quality is lower. In practice, very few
metapixels fail the fitting optimization.

We use HDR imaging for capturing W in the metapixel acquisition
stage during system setup. Since this image is used to compute the
amplitude of the metapixels, HDR imaging assures higher accuracy
by removing over- and undersaturation artifacts in the captured
images. Hence, in Eq. (1) both T and C (formed by the amplitude
and the base image respectively) are in HDR.

Also, concavities on the object’s surface negatively affect the
fitting optimization of the metapixels only when the scale of the
concavities is similar to the size of a projector pixel. With one-
megapixel projectors, this is not too common for table-top size
objects. Larger-scale concavity is illustrated in our examples.

Base and Target Image Computation. To obtain base images,
we use a simple method for objects that do not deviate drastically
from being Lambertian. Since our method does not require the
base image to strictly contain only the albedo, we capture W at
different exposures for each projector and form an HDR image
for each projector. Then, we create a base image by taking the
minimum pixel intensity at every pixel across the projector HDR
images. This process removes most specularities which may arise
from projector light illumination. To compute target images, we use
Blender (http://www.blender.org), a 3D content creation suite.

6. RESULTS AND DISCUSSION

In this section, we provide some insight into the behavior of our
algorithms as well as example appearance edits.

Figure 8 shows the per-algorithm step impact. We start by di-
rectly placing the pixel intensity values from the Mi images into a
multi-projector light transport matrix T. Then, without any projec-
tor pixel modeling, denoising, or constraining of the optimization,
we calculate T+ and use the resulting projector compensation im-
ages. The results show severe color and noise artifacts (Figure 8(a)).
The color artifacts are due to overflow/underflow of projector in-
tensities. Although we can clamp the intensities, the desired ratio
of the color channel intensities would not be preserved, resulting
in color artifacts. Next, we include the step of constraining the
optimization to produce pixel intensity values within [0,1]. This
removes the color clipping artifacts (Figure 8(b)). Subsequently,
we incorporate the projector pixel modeling with elliptical Gaus-
sians and obtain a better-quality appearance (Figure 8(c)). Adding
priority-based regularization for the metapixels (Figure 8(d)) and
smoothness constraints in the optimization of the compensation im-
age results in a smooth and pleasing appearance (Figure 8(e)). As
a comparison, we directly model the influence of a projector pixel
by the corresponding patch of camera pixels (Figure 8(f)), typically
forming a disc or quadrilateral, and find significantly more noise in
this alternative solution due to inaccurate pixel modeling.

Figure 9 demonstrates the accuracy of using our parallel algo-
rithm in computing the constrained optimization. We varied the size
of Rkl between 8 × 8, 16 × 16, and 32 × 32 pixels for the object
shown in Figure 9(a) when solving the constrained optimization
for the base target appearance (described in Section 5). Solving
the full constrained optimization would equate to a single region
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Fig. 9. Region size variation during optimization. We show our parallel
algorithm’s accuracy by varying the region Rkl’s size. No visual artifacts
are produced in the resulting base appearance. (a) Base image of patterned
pedestal used for the optimization. (b)–(d) Close-ups of a resulting syntheti-
cally created base appearance with Rkl’s size varied amongst 8×8, 16×16,
and 32 × 32 pixels.

encompassing the entire object in camera space. Figures 9(b)–(d)
show synthetically created appearance edits for a portion of the base
appearance. For all three Rkl region sizes, no visual artifacts arise
due to our parallel solving algorithm.

We visualize the residual errors from the constrained optimiza-
tion to demonstrate the improvement in the ability to achieve a
high-resolution appearance as projectors are added to the system.
Figure 10(a) shows a photograph of an object (Figures 1(e)–(f))
whose appearance was edited to contain a checkerboard pattern.
For each of Figures 10(b)–(d), we show the per-region residual
optimization error after computing compensation images via the
constrained optimization (red is a large error, blue is a small error).
From left to right, the figures use one to three projectors in the
optimization. As the number of projectors increases, the overall
optimization error decreases. In Figure 10(b), the single projector
is at a grazing angle with the right-half of the object resulting in
large errors. In Figure 10(c), the added projector is also at a grazing
angle with the right half of the object; the errors are mildly reduced.
For Figure 10(d), a third projector is positioned to illuminate the
right half of the object resulting in an overall reduction of error.

The improved resolution of appearance edits due to adding addi-
tional projectors to our system is empirically shown in Figure 11.
Here, another checkerboard pattern is applied to the same object
used in Figure 9. In Figures 11(a)–(d), we show visualizations of
the similarity between the captured image Cr of the appearance
edited object and the target image Ct (red is high similarity, blue is
low similarity). We use a local sharpness metric λ to measure the
similarity of Cr to the high-resolution reference Ct ,

λ = count[(N )r⊗Nt
]

max(count(Nt ), count(Nr ))
, (9)

where Nt and Nr are small neighborhoods around a pixel in binary
edge-detected Ct and Cr images containing at least one checker
pattern respectively, and count(N ) is a function which returns the
number of white pixels in a neighborhood N. Naı̈vely-generated
compensation images (i.e., generated without any projector pixel

Fig. 10. Visualization of optimization error. (a) Photograph of an object
with a checkerboard pattern appearance. (b)–(d) Show the per-region lumi-
nance residual error using 1, 2, and 3 projectors respectively (larger error
in red). Error reduction with more projectors indicates the ability to provide
a higherresolution target appearance. The average normalized per-region
residual error for 1, 2, and 3 projectors is 0.051, 0.014, and 0.007, re-
spectively (e.g., for a 0-255 color channel, the average errors are 12, 5,
and 2).

Fig. 11. Visualization of achieved resolution. Visualization of our quality
metric (higher means better) for grazing angles using (a) one projector naïve
method; (b) one projector our method; (c) three projectors naïve method;
and (d) three projectors our method. (e)–(g) Head-on: object photo, one
projector naïve method, and three projectors our method.

modeling, smoothness constraints, or metapixel regularization as in
Figure 8(b)) and compensation images generated using our method
are compared for one and three projector cases (Figures 11(a)–(d)).
We show a spatially varying value for λ (normalized to 100), and
the results show that using three projectors yields better appearance
edits than a single projector. It is also shown that our method pro-
duces an improvement over the naı̈ve approach when using either
one or three projectors. Figures 11(f)–(g) compare Cr for a grazing
angle case using compensation images generated by a naı̈ve single
projector approach and by our method.

An analysis of the effectiveness of our base-scale decomposition
scheme for target appearances is shown in Figure 12. In Figure 12(a),
we altered a strip of an object’s appearance to that of a horizontal
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(b) (c) (d) (e) (f)
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Fig. 12. Base-scale decomposition. (a) Photo of object with sinusoidal pattern projected on top. Figures (b)–(f) are thresholded photographs. (b) Target
image with increasing sinusoidal frequency from bottom up. (c) Appearance using 1 projector, full optimization (aliasing starts at F1). (d) Appearance using
3 projectors, full optimization (aliasing starts at F3). (e) Using 3 projectors, base contains a high-pass-filtered version of (b), cutoff set at F1. (f) Using 3
projectors, base contains a low-pass-filtered version of (b), cutoff set at F1.

sinusoidal pattern (Figure 12(b)) of increasing frequency up the ob-
ject. Figures 12(c)–(f) are thresholded photographs of the altered
object using compensation images computed with different settings.
In general, as the sinusoid’s frequency increases, the ability of our
system to recreate the sinusoids decreases, resulting in aliasing ar-
tifacts. Figures 12(c)–(d) show the resulting appearance using a full
constrained optimization of one and three projectors respectively
with no base-scale decomposition (the sinusoidal pattern is used as
the target appearance). When only one projector is used, aliasing
begins at the limiting frequency content of one projector, labeled
as F1 in Figure 12(c) (which is very close to theoretical maximum
frequency content F). The projector used is fronto-parallel to the
left side of the strip, so a higher resolution is attained on the left
side of the strip. With three projectors, the maximum frequency
content attained increases, and aliasing begins at F2 (Figure 12(d)).
Based on the sinusoidal pattern, we estimate F2 ≈ 1.5F1 in this
example. Figures 11(e)–(f) show the result of using our base-scale
decomposition while varying the base image Cb to have different
maximum levels of frequency content. In Figure 12(e), a high-pass
filtered version of the target image (with cutoff set at F1) is used as
Cb. The resulting quality is similar to that shown in Figure 12(d)
for the full optimization. If instead Cb is low-pass filtered (with
cutoff set at F1), the higher-frequency content of the appearance
is aliased (Figure 12(f)) and the best frequency content achieved
more closely resembles the best possible with a single projector.
Altogether, this analysis shows that the base-scale decomposition
always yields similar quality as the full constrained optimization for
frequency content at or below F1, thus empirically verifying Sec-
tion 3. Further, frequency content in the target appearance greater
than F1 is attainable using the base-scale decomposition so long as
Cb has the frequency content above F1.

Figure 13 demonstrates the improved quality of our appearance
edits by comparing our method against previous multi-projector
systems. These photos are subsections of the appearance in
Figure 14. Figure 13(a) shows the resulting appearance edit using
three superimposed projections but without constraining the pixel
intensity values to [0, 1] when solving the light transport matrix
and thus in a manner similar to Wetzstein and Bimber [2007];

a) b) c)

Fig. 13. Comparison against previous systems. (a) Appearance from solv-
ing the light transport matrix without constraining pixel intensity values
to [0,1] (i.e., Wetzstein and Bimber [2007]); visual artifacts are present.
(b) Appearance from solving the light transport matrix constraining pixel
values to [0,1]; visual artifacts are reduced but remain. (c) Appearance from
our method; visual artifacts are mostly removed.

significant visual artifacts are present due to pixel value over/under
flowing. By constraining the pixel intensity values to [0, 1], the
visual quality is improved, but visual errors are still observed
(Figure 13(b)). Our system minimizes visual artifacts and achieves
more consistent colors (Figure 13(c)).

In Figure 14, we show several altered objects demonstrating var-
ious appearances and capabilities of our system. These appearance
edits include the effects of novel illumination and geometric and
color edits. Some of these effects are dynamic which are better
illustrated in our accompanying video. The dynamic appearances
are achieved by quickly swapping between computed compensa-
tion images for each projector. Target appearances may also in-
clude view-dependent effects such as specular highlights and inter-
reflections (e.g., Figure 1(b)). While these appearances are static
(i.e., no viewer tracking), static view-dependent effects are still
compelling as shown in our video. Figures 14(c)–(e) show an ex-
ample of nonadditive appearance editing where the surface albedo’s
color patterns are cancelled in addition to colors being edited. The
inset next to Figure 14(c) shows the physical appearance of the
patterned pedestal used in this example (i.e., not the same object as
in Figure 1), on top of which a new and nonadditive pattern was
placed for the target appearance.
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(d)(a) (b) (c) (g)(f)(e)

Fig. 14. Example appearance editing. (a) Original photograph of a vase. (b) The vase with two leaves added. (c)–(e) Patterned pedestal (photo of original in
inset) with three appearances imparted on it. (f) Beethoven model with changed appearance (photo of original in inset). (g) Beethoven model with the head
appearing lowered as in a nodding motion, however, the actual object is unchanged.

7. CONCLUSIONS

We presented a framework for fast high-resolution appearance edit-
ing using multiple superimposed projections. Our solution builds
upon multi-projector light transport and solves a constrained op-
timization which yields an appearance of the highest resolution
possible. With our base-scale decomposition, the constrained opti-
mization is done once, and later appearance modifications are done
quickly by fast, runtime linear scaling operations. We also use an
elliptical Gaussian model to obtain accurate, noise-free estimates
of projector pixel centers, sizes, shapes, and interactions. Several
compelling appearances are achieved.

7.1 Limitations and Future Work

Our approach is not without limitations and several interesting av-
enues of future work lay ahead. First, there is a loss of contrast as
a result of the need to compensate for the weak presence of certain
frequencies in the surface’s reflectance function. Hence, an item of
future work is using optimal projector locations [Law et al. 2010]
and minor target appearance modifications [Law et al. 2011] in order
to better accommodate desired alterations. Second, our method is
not view dependent, despite yielding some convincing but static
view-dependent effects (e.g., Figure 1(b)). While using head-
tracking and special viewing devices is an option, we look to other
auto-stereoscopic methods to generate compelling view-dependent
effects. Third, we are investigating how to support non-Lambertian
objects (e.g., using Xu and Aliaga [2009]). Fourth, we are interested
in incorporating depixelation and focus improvement algorithms
(e.g., Zhang and Nayar [2006]). Fifth, we would like to explore
techniques to reduce preprocessing time. In a real-world scenario,
errors accumulate due to vibrations and drift; faster preprocessing
would improve the practicality of our system.

APPENDIX: ANALYSIS OF IMAGE
DECOMPOSITION

When no base-scale decomposition is applied, the target compen-
sation image Pt is given by

Pt = T +Ct = QCt,

where Q = T +. Then, by considering Q[i] to be the ith row of Q,

Pt =

⎡
⎢⎢⎣

Q[1]
Q[2]

...
Q[p]

⎤
⎥⎥⎦Ct

⎡
⎢⎢⎣

Q[1] · Ct

Q[2] · Ct

...
Q[p] · Ct

⎤
⎥⎥⎦

Assuming objects with no self-occlusion and no self-reflection, we
can say that every pixel in the projector affects only one spatially
contiguous area in the camera and vice versa. Hence, for both T and
Q, every pixel i in Pt affects a single neighborhood denoted by Ai .
Using Ct = Cb ⊗Cs , the value of the accurate compensation image
at pixel i, Pt [i] is given by

Pt [i] = Q[i] ·Ct =
∑
j∈Ai

Q[i, j ]Ct [j ] =
∑
j∈Ai

Q[i, j ]Cb[j ] ⊗Cs[j ].

Next, when using our approximation, Pa is given by

Pa =

⎡
⎢⎢⎣

Q[1] · Cb

Q[2] · Cb

...
Q[p] · Cb

⎤
⎥⎥⎦ ⊗ Ps.

Hence,

Pa[i]

⎛
⎝∑

j∈Ai

Q[i, j ]Cb[j ]

⎞
⎠ ⊗ Ps[i].

Now, recall that

Ps[i] =
∑
j∈Ai

Cs[j ]w[j ],

where w[j ] are normalized weights (i.e., those of the elliptical
Gaussian at that pixel). Thus, Ps is the image obtained by a low-
pass filtering of Cs . Pa will be exactly equal to Pt if there is no loss
of information when low-pass filtering Cs . This can only happen if
Cs is bandlimited by the maximum frequency that can be sampled
by one projector. Higher frequencies have to be encoded in Cb.
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