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Abstract
We define geometric trees as graphs with no cycles in which nodes have spatial co-ordinates and edges are geo-
metric curves. Temporal morphing of geometric trees through changing positions and geometry of the nodes and
edges are common in many applications, physical and simulated data. Examples include geological structures
such as changing patterns of river beds and biological structures such as respiratory tracks and deforming pat-
terns of neurons. Given two snapshots of such trees at different times, or two trees representing similar data sets,
or trees generated by two different methods, comparison between these trees will provide a wealth of information
for interpreting the data or the methods that produced that data. We propose an algorithm to compare geometric
trees by detecting feature similarities between the trees, wherein the features are geometric as well as topological.

1. Introduction

Geometric trees as defined as graphs having no cycles in
which the nodes have spatial co-ordinates and the edges are
geometric curves. Special cases of geometric trees are well
known embedded trees in a metric space in which the edges
do not self-intersect. Examples of geometric trees include
visualization of river’s tributaries and distributaries, animal
neurons, and embedding and visualization of software (non-
recursive) function call/usage data.

In many applications, a geometric tree may structurally
morph by altering the positional co-ordinates of the nodes,
the geometry of the edge curves, and by adding or deleting
a few nodes and edges. For example, a neuron can be repre-
sented as a geometric tree which changes structurally under
the influence of a chemical agent (Figure 1), the course of
a river can change over time, the respiratory tracks of mam-
mals can grow with age or the execution path of a software
can change for different data sets (Figure 14). Geometric tree
morphings are also quite common in animation applications.
Given two snapshots of such morphing geometric trees, an
appropriate matching between them provides valuable in-
sight about the process of metamorphosis or the attributes
of the external stimuli causing it.

A matching between two geometric trees entails deter-
mining similarities between different parts or subtrees of the
two trees. In other words, the output of the geometric tree
matching algorithm would be a list of matched node pairs,
one from each tree, and ensuring that each node has at most
one matched node in the other tree.

Figure 1: Finding similarities between two geometric trees
representing a regular animal neuron and a post ischemic
neuron. Some of the relevant matches in the trees identified
by our algorithm are shown, color coded with similar colors.

1.1. Main Contributions

The challenges in finding similarities in geometric trees
mainly arise due to allowed and possible differences from
one tree to the other. Many graph similarity algorithms as-
sume that the graphs have same number of nodes, or assume
that one graph is a subgraph of the other. We present a tree
matching algorithm that allows for addition and deletion of
nodes and edges, and vast changes in both topology and ge-
ometry. Further, in spite of such large differences between
the trees, our algorithm can take into account node adjacency
and edge coherency in the matching i.e. two adjacent nodes
in one tree is highly likely to be matched with two adjacent
nodes in the other.

In order to ensure node adjacency and edge coherency,
one has to consider exponential number of sets of edge dis-
joint paths in each tree for matching. Most of the earlier
works reduce the solution space by limiting the problem to
labeled, rooted, topological trees maintaining strict ancestor
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descendant relationship which implicitly defines the sets of
edge disjoint paths. In contrast, we consider completely arbi-
trary geometric trees that may be rooted or unrooted, labeled
or unlabeled, topological or geometric. Instead of finding or
restrictively pre-defining the sets of edge disjoint paths, we
build these paths using salient geometric and topological fea-
tures of the trees and thus reduce the solution space.

In summary, we present a novel, one of the most generic
algorithm to find a matching between two unlabeled, geo-
metric and/or topological, rooted or unrooted trees. The trees
need not have equal number of nodes or edges and can have
arbitrary geometry in the plane. Our algorithm is capable
of handling even approximate matches between trees. The
matches are invariant to affine transformation of the trees.
The average run time of our algorithm is O(n3log(n)), where
n is the number of leaf nodes in each tree.

The rest of the paper is organized as follows. Following
the discussion on related work in Section 2, we formally in-
troduce the problem of tree matching in Section 3, followed
by Section 4 which describes in detail the process of geo-
metric tree matching. We present the results of our matching
algorithm in Section 5 and finally conclude in Section 6.

2. Related Work

Tree structures have been well studied in diverse fields of
computer science ranging from computer vision, natural lan-
guage processing, computational biology, web applications,
compiler optimization and many others. Most of these ap-
plications consider labeled trees, wherein, the nodes of the
tree are assigned symbols taken from a fixed finite alphabet.
Some applications consider ordered trees where the sibling
nodes are assigned a specific left-right order. The general
structure for finding matches in labeled trees is to first define
a set of basic operations on the trees such as relabeling nodes
or inserting/deleting nodes. Each such operation is associ-
ated with a cost, based on which a tree edit distance is cal-
culated which is a sequence of operations with a minimum
total cost. The edit distance notion for ordered trees was
introduced by Tai [Tai79], which was further modified by
Kosaraju [Kos89], Zhang and Shasha [ZS89], Klein [Kle98]
and recently by Chen [Che01] to imrove the complexity. A
survey of tree edit distane and related problems can be found
in [Bil05]. The subtree isomorphism problem for ordered
trees have been extensively studied by Makinen [M8̈9].

Tree matching is a well studied topic in the fields of com-
puter vision and pattern recognition. Liu et.al. [LG99] pro-
vides a framework for 2D shape comparison by represent-
ing shapes with their skeletons and matching such skeletons
for different shapes under rigid transformations and occlu-
sions. The basic operations for matching are merging and
cutting branches of a tree and are limited in applications.
Tree matching has been used by Cantoni et.al. [CCG∗98] to
match two planar objects by decomposing them into trees

having nodes representing several levels of resolution and
then finding a one to one mapping between paths in both
the trees. A video comparison framework was proposed by
Wing Ng et.al. [NKL01], wherein each video sequence is hi-
erarchically decomposed into scenes and shots and two such
sequences are matched at each hierarchical level.

Tree matching has applications in natural language pro-
cessing in searching and retrieving complex feature struc-
tures from lexical databases. Kilpelainen et.al. [KM92] and
Oflazer [Ofl96] apply this concept to search for trees which
are ‘close’ to a given query tree in a database of labeled trees,
where closeness is defined in terms of an error metric. Wang
et.al. [WMC09] employs a syntactic tree matching approach
to identify ‘similar’ questions in a question-answer (QA)
database. Syntactic tree matching is also used to identify dif-
ferences between two programs of the same programming
language, as shown by Yang [Yan91]. Pattern matching, as
employed to programming languages have been extensively
studied by Hoffmann et. al. [HO82] and Ramesh [RR92].

Tree matching finds its place in web applications and de-
sign as well. The most common application is comparing
similar web pages represented as labeled document object
tree. In this context Kumar et.al. [KTA∗11] introduce the
concept of flexible tree matching and prove that such match-
ing is NP complete and provide approximation algorithms
to solve for the same. Jindal et.al. [JL10] uses tree match-
ing for web data extraction from webpages having repeated
embedded patterns.

Computational biology is another field where tree match-
ing finds wide applications. Aoki et.al. [AYO∗03] use tree
matching for finding and aligning maximally matching sub-
trees in two glycan (carbohydrate sugar chains) trees. Luc-
cio [LP91] considers h-ary trees commonly found in bio-
chemical structures such as glycogen, and computes the oc-
currence of such trees in larger trees. Jiang et.al. [JWZ95]
provides an efficient tree alignment algorithm for comparing
ordered trees as observed in RNA secondary structures.

The fundamental difference between all of the above men-
tioned methods and our method is that, our method consid-
ers geometric trees which are not labeled. Since geometry is
involved, the tree nodes and edges can have arbitrary config-
uration and the tree can be rooted as well. We do not assume
any specific kind of tree, and this makes our algorithm more
general in nature and not confined to topology. The work
of Pisupati, et.al. [PWMZ96] is somewhat similar to ours as
they consider geometric tree matching as applied to 3D lung
structures. However, they consider only rooted binary trees
with one-to-one mapping between nodes, as is found in their
application, and have developed an algorithm to determine
whether two such trees are isomorphic under the operation of
graph minors. In contrast, we consider arbitrary trees which
may not have a one-to-one matching and assume that the
matching parts may exist anywhere in both the trees, with
no strict ancestor-descendant relationship.
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3. Problem Definition

A geometric tree is a graph without any cycles where each
node is associated with co-ordinate values and each edge,
joining two nodes, is a geometric curve. The number of
edges incident on a node is defined as the degree of the node.
The nodes with degree one are defined as leaf nodes, those
with degree two as path nodes, and nodes with degree more
than two are defined as internal nodes (Figure 2). Our geo-
metric tree may allow intersections of tree edges in plane but
such intersections are not considered as nodes in the graph
and hence this graph is still a tree.
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Figure 2: Left: A geometric tree with co-ordinates of some
of the nodes. Right: A branch decomposition is the segmen-
tation of the tree into edge disjoint paths. The root node and
the branches with their hierarchical levels are highlighted.

Matching two geometric trees is equivalent to finding
matches between their node sets. However, a naïve match-
ing between nodes does not take into account spatial co-
herency, potentially generating matches in drastically dif-
ferent tree locations. A match between the different paths
of the two trees avoids this problem but fails to produce a
one-to-one mapping between tree nodes and edges due to
possible path overlaps. In order to avoid such overlaps, it
is necessary to decompose a tree into a set of edge-disjoint
paths, unless such a decomposition is already provided, and
then find matches between such decompositions of two trees.
This process is defined as a branch decomposition of the tree
(Figure 2, Section 4.1), and an element or branch in this de-
composition is defined as the path from a leaf node to an in-
ternal node or another leaf node. In this process, if the tree is
unrooted, we compute one geometrically dominant branch
between two leaf nodes one of which is considered as the
root. If the input is a rooted tree, we find branches that start
from an internal or root node and end in a leaf node such
that they are pairwise edge-disjoint and the union of these
branches is the given tree. Each branch thus contains exactly
one leaf node and one internal or root node.

Given the branch decompositions of the two trees, we
match these trees by finding a mapping between their de-
compositions such that a branch in one tree has either zero or
one matched branch in the other tree. Using branch decom-
position, which by definition is edge-disjoint, tree match-
ing ensures that no edge has more than one match in the
other tree. Since we consider trees that may not have the
same number of nodes, edges, or branches, there may be un-
matched branches in either or both the trees.

Consider two sets, A and B, of mutually disjoint branches
in the two trees. Each pair of branches (ai,bi), where ai ∈ A
and bi ∈ B has a branch matching cost which takes into ac-
count their geometric and topological features. Each branch
in either set also has a cost for not matching it with any
branch. Let Φ be the set of ‘dummy’ branches such that the
cost of matching any branch p in either set to a branch in Φ is
the cost of not matching p to any branch in the other tree. We
define the problem of similarity matching as one in which
every branch is matched to no more than one branch in the
other tree, and the total cost of this matching is minimum.
In other words, our problem is to find the set of matching
branches S, S ⊆ (A∪Φ)× (B∪Φ) such that if (ai,bi) ∈ S,
(a j,b j) ∈ S, ai,a j ∈ A, bi,b j ∈ B, then ai 6= a j and bi 6= b j;
and the sum of the cost of the matches in S is minimum.

4. Geometric Tree Matching

The source and target trees are decomposed into a set of edge
disjoint branches prior to matching. The branches are then
compared to obtain an optimum set of matched branches.

4.1. Branch Decomposition of a Tree

Let Ω be the set of all possible paths of the tree, wherein
a path originates in an internal node or a leaf node and
terminates in a leaf node. Each path in Ω is characterized
by a set of features based on its geometric properties. In a
vector space of features, which we call the feature space,
each path is represented by a feature vector given by u =
(u1,u2, ....,un). A scalar function f : Rn → R from the fea-
ture space is defined which assigns a scalar value, called a
feature value to each path. We model f as a linear combina-
tion of the features.

A	   B	  

D

1800	   880	  

C	  
A	  B	  

D

C	  

Figure 3: The feature
value of the path ACB is
more than that of path
ACD even if the lengths
are same, as the for-
mer has a turning an-
gle of 180◦ at C, making
ACB more preferred as a
branch over ACD.

The geometric features
that comprise the feature
vector of a path are its
length, algebraic and abso-
lute sums of the turning
angles at each intermediate
node of the path (assuming
the path to be piece wise
linear), and the number of
self-intersections along the
path (Figure 4). The func-
tion f is evaluated and a fea-
ture value obtained for ev-
ery path in Ω. The definition
of f for this purpose has
higher contribution from the
turning angle feature, e.g., for an internal node of degree
three, there are two potential paths through the node, out
of which the one making an angle closer to 180◦ has a
higher feature value contribution at the internal node imply-
ing a possible path continuity (Figure 3). All other features
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have equal contribution in evaluating f . The path p in Ω

with the highest feature value is selected as the geometri-
cally dominant branch b, and the process ensures that this
branch has two leaf nodes, one of which is considered a root
node in case of an unrooted tree, and all the paths having
edge overlaps with this branch are not considered further.
Next, for each internal node i of b, the path originating from
i with maximum feature value is selected as a second level
branch with b as its parent. The process continues for each
of the second level branches to obtain a set of third level
branches, and so on (Figure 2). The selection of branches in
this manner ensures that there is no edge-overlap between
two branches. Note that in case of a rooted tree, there can
be multiple disjoint branches originating from the root, each
of which is a first level branch. The above process gives a
branch decomposition of the tree.

The branch decomposition of a tree allows us to augment
the feature vector of a branch with topological features like
ancestor-descendant relationship between branches and the
hierarchical position of a branch in the tree from a specified
root (Figure 4). This enhanced feature vector of the branch is
later used to calculate its matching cost with another branch.
For the purpose of calculating the matching cost between
branches we also add the geometric feature of histogram of
turning angles at internal branch nodes to the feature vector.
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Figure 4: Left: The geometric properties in the feature vec-
tor of a branch. Right: The hierarchical decomposition of a
rooted tree into different levels. branch B is in level one and
has two children, A and C, each in level two. Branch D is a
child of C and is in level 3.

4.2. Cost of Matching Individual Branches

The cost, Ci j of matching two individual branches i and j, in
the source and target trees respectively can be obtained by
computing the weighted distance between their respective
enhanced feature vectors in the feature space (Equation 1):

Ci j =
n

∑
k=1

wk ∗dk(uk,vk) (1)

where uk and vk are the kth feature in the feature vec-
tors, u = (u1,u2,u3, ....,un) and v = (v1,v2,v3, ....,vn) of the
branches i and j respectively, dk and wk are the distance
function evaluating the feature similarity and the weight as-
sociated with the kth feature respectively. The distance func-
tion we consider is the chi-squared metric for comparing the

histograms of turning angles (Equation 2 where uk and vk are
the histograms of turning angles of branches in the source
and target trees, and uk(i) and vk(i) are the values in the ith

bin of uk and vk respectively) and the Manhattan distance
(Equation 3) for comparing all other features. Note that any
other distance function can be used, e.g. Bhattacharya dis-
tance [Bha43] or Kullback-Liebler divergence [KL51] for
comparing histogram of turning angles.

d(uk,vk) = ∑
i

(uk(i)− vk(i))
2

uk(i)
(2)

d(uk,vk) = |uk− vk| (3)

Figure 5 shows the five closest matches for a source tree
branch with target tree branches, where the matches are eval-
uated in terms of the cost function described above.

7.94	  

18.16	  

10.86	  20.32	  

18.89	  

7.95	  

Figure 5: The match costs of a source tree (left) branch high-
lighted in red with every target tree (right) branch are evalu-
ated and the five closest matches are highlighted in red. The
costs are shown in blue alongside.

4.3. Cost of not matching a tree branch

Since we consider trees which may not have equal number of
nodes, not all branches may have a match. Even if there are
equal number of elements, a few matches may not be appro-
priate when considering node adjacency and edge coherency,
and may be better to leave such branches unmatched. The
cost Ciφ, of not matching a branch i with any branch is calcu-
lated as a weighted combination of its features (Equation 4).

Ciφ = ∑
k

wk ∗dk(uk,0) (4)

where uk is the kth feature in the feature vector of branch
i and wk and dk have the same meaning as before.

With this framework, the overall tree matching cost can
be computed as follows. Let A and B be the sets of branches
in the source and target trees respectively. Let S⊆ (A∪Φ)×
(B∪Φ) be a set of matched branches where Φ is the set
of dummy branches, such that if (ai,bi) ∈ S, (a j,b j) ∈ S,
ai,a j ∈ A, bi,b j ∈ B, then ai 6= a j and bi 6= b j. The cost,
CS of such a set S is defined as the sum of the costs of
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the matched branches and the costs of not matching the un-
matched ones. Let Ψ be the collection of all such sets S. The
similarity match, Sm ∈Ψ is given by Equation 5.

Sm = arg min
CS

(S ∈Ψ) (5)

4.4. Tree Matching as Minimum Weight Perfect
Matching Problem

The tree matching problem to calculate the matching cost as
described above, can be modeled as a bipartite graph match-
ing problem, where G is a graph, with two disjoint node sets,
P and Q, corresponding to the branch sets A and B of the
source and target trees respectively. Null sets of branches,
which we call dummy nodes are added to both P and Q to
make them equal in size. An edge Ei j in G connects a node
i∈ P to a node j ∈Q. Each edge Ei j is associated with a cost
Ci j which is the branch matching cost if i and j are regular
branches, is the cost of not matching a branch if either i or
j is a dummy node, and is equal to zero if both i and j are
dummy nodes. With this framework, tree matching is equiv-
alent to finding a perfect matching of G with a minimum sum
of edge costs (Figure 6). This is known as the ‘Minimum
weight perfect matching problem’, formally stated below:

Minimum weight perfect matching problem: In a com-
plete bipartite graph, G(P∪Q,E), with node sets P and Q,
|P| = |Q|, weight Ci j for all the edges Ei j connecting nodes
i ∈ P and j ∈ Q, a minimum weight perfect matching M is a
1-factor (spanning subgraph where every vertex is a degree
1 vertex) of G where the sum of the weights of the edges in
M is minimum.

Regular	  
Nodes	  
SOURCE	  
TREE	  

Regular	  
Nodes	  
TARGET	  
TREE	  

Dummy	  
Nodes	  Dummy	  

Nodes	   Edge	  Cost	  =	  0	  

Match	  cost	  

Figure 6: Modeling the tree matching as a minimum weight
perfect matching problem. An edge between regular nodes is
the match cost between them, whereas that between a regular
and a dummy node represents the cost of not matching the
branch. Dummy nodes have zero edge cost between them.

We use Kuhn-Munkres algorithm [Kuh55, Mun57], also
known as the Hungarian algorithm which has a running time
of O(n3), where n is the number of nodes in each set, to solve
the minimum weight perfect matching problem.

Computing minimum weight perfect matching with all
branches of all hierarchy of both the trees as the node set,

will produce completely arbitrary results with matches scat-
tered throughout the trees as shown in Figure 7. Restricting
the matches to the same hierarchical level produces an intu-
itive matching in this case. However, this restriction is not
sufficient, as Figure 8 shows. Even if the matched branches
in the same level are geometrically very similar, they may
have completely different subtrees. A better match can be
obtained by not limiting the matching to individual branches,
but also by considering and matching the subtrees originat-
ing from the two branches, thereby taking into account the
spatial coherency.

A A’	  B

B’	  C C’	  

E

D

FGH
E’	  F’	  

D’	   H’	  

G’	  
ROOT	   ROOT	  

A B

C

E

D

FGH

ROOT	   ROOT	  

A’	  
B’	  

C’	  
E’	  

F’	  

D’	  G’	  

H’	  
Level	  1	   Level	  1	  

Level	  2	  
Level	  2	  

Level	  2	   Level	  2	  

Level	  3	  

Level	  3	  

Figure 7: Matching (shown by same alphabets) all the
branches of the two trees (left) does not produce the intu-
itive match obtained by restricting the matches to the same
hierarchical levels (right).
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Figure 8: Restricting branch matches to the same level does
not always produce intuitive match. Although the matched
branches, C-C’ and E-E’ are geometrically similar, they
have structurally different subtrees. A more intuitive match
obtained with the modified branch match cost is shown on
right with red and blue circles.

In order to identify such deeper matchings, the cost ba-
sis for matching individual branches have to be modified to
include their descendants as well. The match cost between
two branches a and b is thus computed recursively in terms
of their children branches as follows (Algorithm 1). A min-
imum weight perfect matching is computed for the graph
with node sets representing the children branches of a and
b. Let the cost of this matching be C1. Let C2 be the cost of
matching a and b individually (as obtained in Section 4.2).
Then the cost of matching a and b is given by C1 +C2. This
modification of the branch cost gives an intuitive matching
for the trees in Figure 8.

The restrictive tree matching with the modified branch
cost is also not sufficient for producing intuitive matches as
Figure 9 shows. The exposure of the branches level by level
fails to match near identical sub trees at different levels. A
better approach is to expose the branches that can be poten-
tially matched, in clusters, over multiple iterations. In each
iteration, only a few branches are exposed and thus the op-
tions for finding a match for a branch within the exposed set
is limited, and if no acceptable matching branch is available
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Algorithm 1 Calculate Matching Cost (a, b)
1: Input: a in source tree T1 and b in target tree T2
2: Output: The cost C of matching a and b
3: if a = NULL and b = NULL then
4: return 0
5: end if
6: S1← all children of a, S2← all children of b
7: ∀i ∈ S1, j ∈ S2, C(i, j)=Calculate Matching Cost (i,j)
8: C1←the cost of minimum weight perfect matching of a

graph with node sets S1 and S2 and edge costs C(i, j)
9: C2← individual cost of matching a and b

10: return C1 +C2

from that set, then in the next iteration of perfect matching,
more potentially matchable branches are exposed to increase
the chances of a good match. We call this approach sliding
window matching which is described in detail in the next sec-
tion. Sliding window matching produces a desirable match
for the trees shown in Figure 9.
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4
2E 5
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A B
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2
Level	  2	  

Level	  2	   Level	  2	  

Level	  2	  

Level	  3	  

Level	  2	  

E 5

Figure 9: Left: Restrictive matching with modified branch
cost produces a matching of B-3,D-4 and E-5. The subtrees
at B and 2 are identical and should be matched ideally.
Right: Sliding window matching exposes branches B,C and
D from source tree and branches 3 and 4 from target tree, all
in level two. A perfect match between these two sets produces
B-3 and D-4 (and E-5), out of which D-4 has a low match
cost and considered a good match, while B-3 is not. In the
next step, branch 2 from target tree is exposed and a new per-
fect match is computed between sets {B,C} and {2,3} from
which a desirable B-2 match with low match cost is obtained.
Note that a match between all branches with modified cost
could have produced a B-5 match, which is not desirable.

4.5. Sliding Window Matching

The sliding window tree matching algorithm is presented in
Algorithm 2). Let σ1 and π1 denote the set of first level
branches in the source and target trees respectively. Let S
be the set of matched branches, which is the output of the
algorithm. A minimum weight perfect matching, P is com-
puted with the bipartite graph with node sets as σ1 and π1.
The weight of the edge between the nodes is the match cost
that is computed by Algorithm 1. Among the chosen edges
in the perfect matching, if an edge cost, say between a1
and b1, is less than a specified threshold η, then (a1,b1) is
added to the solution set S of matched branches. Further,
since, according to Algorithm 1, the matching cost between
a1 and b1 includes the perfect matching cost between the

descendent branches of a1 and b1, the matched descendent
branches that are responsible for this minimum match cost
between a1 and b1 are also included in the solution set (Step
10, Algorithm 2). Adding matches between the subtrees into
the final set also improves spatial and topological coherency
of matches through the levels of hierarchy. Any unmatched
descendent branches are no longer considered in the subse-
quent matching process and are left unmatched, since their
‘non-matching’ cost is also included and considered while
matching a1 and b1 in the recursive Algorithm 1. Alterna-
tively, since the cost of an unmatched branch in the subtree
is usually higher than the cost of matching, such unmatched
branches in the subtree can be used in the subsequent it-
erations of the algorithm to find a possible match. In such
a case, which is dependent on the application requirement,
Algorithm 2 is modified appropriately to include unmatched
branches in subsequent iterations.

Let σ1′ and π1′ be the set of branches which have re-
mained unmatched in the source and target trees respec-
tively. Also let σ2 and π2 be the set of second level branches
which are the children of those in σ1′ and π1′. A new in-
stance of bipartite graph matching is created using σ1′ ∪σ2
and π1′ ∪ π2 as the node sets which is solved to obtain a
new set of matches in a similar manner as described before.
The process is continued by repeatedly adding new branches
from lower hierarchical levels to the unmatched ones from
the previous level in each successive iteration until both the
sets remain unchanged from the previous iteration. In each
iteration the sets σ and π denote the sliding window to which
elements are added and removed between iterations.

Algorithm 2 Tree matching algorithm
1: Input: The sets of edge disjoint branches A from source

Tree, T1 and B from target tree, T2
2: Output: A match, S, of the form (ai,bi), where ai ∈

A,bi ∈ B, and if (ai,bi),(a j,b j) ∈ S, ai 6= a j,bi 6= b j
3: σ′ ← first level branches of T1
4: π′ ← first level branches of T2
5: repeat
6: P← a minimum weight perfect matching of σ′, π′
7: for each (a,b) ∈ P do
8: if Cost of edge (a,b)< η, then
9: Q← perfect matching of descendants of a,b

10: S = S∪{(a,b)}∪Q
11: σ′ ← (σ′−a) , π′ ← (π′−b)
12: end if
13: end for
14: σ← children branches of σ′
15: π← children branches of π′
16: σ′= σ∪σ′, π′= π∪π′
17: until σ = σ′ and π = π′
18: S = S∪P
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4.6. Analysis of The Sliding Window Matching

In our matching algorithm, if two branches are matched
at any iteration, their descendants are also subsequently
matched. Suppose at any iteration the branches to be
matched are σi = {a1,a11}, where a11 is a child branch of
a1, and πi = {b1,b11}, where b11 is a child branch of b1.
Now suppose the matching algorithm matches a1 to b11 and
a11 to b1. Although a11 is matched to b1, it may be possible
that due to recursive matching of a1 and b11, as a child of a1 ,
a11 is matched to a child of b11, at the same time. It is highly
unlikely due to the cost structure of the edges that a11 has
low cost both with b1 and b1’s grandchild, unless the given
tree is an infinite recursive tree with self-similarity. If such
matches happen, the match with the lower cost is accepted.

Memoization: The match cost between two branches is
calculated recursively, which allows us to memoize the so-
lution, e.g. if two branches a1 and b1 and all of their descen-
dants remain unmatched in a particular iteration, the match
cost between them remain unchanged, and can be used in the
next iteration. If, on the other hand, any of the descendants,
say a11 of a1 is matched to some other branch, then a11 is
not considered in the subsequent iterations. This changes the
subtree originating from a1, thereby calling for a match cost
recalculation between a1 and any branch in the other tree.

The sliding window paradigm introduces branches one
level at a time, in every iteration. Alternatively, branches
from multiple levels can be introduced in the matching at
each stage which may open up the possibility of different
matches across hierarchical levels at the expense of solving
a matching problem with higher number of nodes in each set
of the bipartite graph. However, this may lead to less intu-
itive matches as is explained in Figure 10.

Figure 10: When two levels are exposed for matching,
branch 2 in source tree is matched to branch C in target tree.
A more intuitive match is obtained by exposing one branch
at a time that matches branches 1 and A and their respective
descendants 2 and B.

Our matching algorithm exposes branches from the first
level onwards. It is also possible to expose branches start-
ing from the lowest level and gradually add higher level
ones. However, this has the risk of generating far less intu-
itive mapping as the spatial coherency is often lost and sub-
trees from drastically different tree locations can be potential
matches (Figure 11).

Figure 11: A potential matching produced between two trees
when the branches are exposed from the leaf are shown with
similar numbering. A much more intuitive matching shown
by similarly colored circles is obtained if branches are ex-
posed from higher to lower hierarchical levels.

4.7. Choice of Weight Vector and Threshold

The choice of the weight vector and threshold value used for
matching is often dictated by the application under consider-
ation (Figure 12). We provide an automatic way of comput-
ing the weight vectors by comparing the standard deviation
of the features in either tree. Each feature is normalized to lie
within the same range and the standard deviation of the fea-
ture is calculated for each tree. Let the minimum of the two
standard deviations (one from each tree) be ζi for the ith fea-
ture. The proprotion of the weight vectors used is same as the
proportion of the ζ’s, rounded to the nearest integer, e.g. if
there are two features f1 and f2 with corresponding propor-
tions of minimum standard deviations ζ1 : ζ2 = 1 : 2, then the
respective weight vectors, w1 and w2 are also in the propor-
tion 1 : 2. This ensures that a feature having a greater vari-
ation is a greater deciding factor for matching. The weight
for the histogram of turning angles feature is taken to be the
same as the weight of the sum of turning angles. The weight
vectors for topological features is typically chosen as the av-
erage of the weights of the geometric features. Our system
is also flexible in allowing the user to provide weights of his
or her choice prior to matching.

Typically the threshold chosen at the start of the algorithm
is gradually reduced over subsequent iterations thereby en-
suring a lower threshold for matching smaller subtrees. We
choose a starting threshold of 40% of the highest matching
cost between branches of the two trees, although the user can
manually set this value.

1

2

3

7

4

6

5

Source	  Tree	  

1

2
3

4

7

6

Target	  Tree	  
Match	  based	  on	  

turning	  angles	  only	  

1

2

3

4

7
6

Target	  Tree	  
Match	  based	  on	  	  

length	  &	  turning	  angles	  	  

Figure 12: Different matches obtained between source and
target tree with varying weight vectors. Center: Feature vec-
tor consists of turning angles only. Right: Feature vector
consists of equally weighted length and turning angles.
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Figure 13: Examples of trees matched by our algorithm. Each row shows a set of source and target trees. The matched parts in
each set is highlighted with the same color and also numbered with same numbers. Note that only a few relevant matches are
shown and a lot of trivial matches occupying the same relative position on either tree have not been highlighted for aesthetic
reasons, although such matches are detected by our algorithm.
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Figure 14: Top Row Left: Matching both sides of a human respiratory tree (picture: 3D Bronch ipad/iphone app). The matches
obtained between the right and left (shown reflected) lungs brings out the symmetry between them. A slight mismatch is shown
by the red circle. Top Row Right: Aging process of cortical pyramidal neurons ( [PM01]). A fairly good match between the first
level neuron branches illustrates the growing process. Bottom Row: Matching the shifting pattern of Kosi river over two time
spans. Matches obtained reveal the similar nature of river flow over these time spans, which is of high geographical importance.

5. Results

Figure 13 shows the results of our matching algorithm. We
have shown five characteristically different types of geomet-
ric trees to be matched. Note that only a few relevant matches
found by our algorithm are highlighted for aesthetic reasons,
although our algorithm detects all of them. For each row in
Figure 13, the weights of the features are calculated automat-
ically and considering the features in the following order:
length of branches, sum of turning angles, absolute value of
turning angles, number of self-intersections and histogram
of turning angles, the weight proportions from top to bot-
tom rows are 13:26:22:0:26, 21:22:22:0:22, 20:16:17:20:16,
83:0:0:0:0 and 11:22:20:14:22 respectively. Our algorithm
also produces intuitive matches in characteristically different
trees as shown in Figure 15. The matching is predominantly
in terms of number of intersections and the weight vectors
are manually set to 5:1:1:5:1.

Our algorithm works well when applied to geometric trees
obtained from real world physical systems. Figure 14 shows
the results of our algorithm when applied to a human respi-
ratory tree, changing river bed pattern and a growing neuron.

The entire system is built in C++ using Visual Studio 2012
in an Intel Xeon CPU (2.00 GHz, 2 GB RAM, 64-bit OS).
The run times of our algorithm applied on the examples
shown in Figure 13, in order, are given in Table 1. It can
be observed that the run time depends upon the depth of the
tree as well the number of tree branches.

6. Summary

We have introduced a variant of the minimum weight perfect
matching called the sliding window matching in which the

Table 1: Run times of our algorithm on Figure 13 trees.

Depth
of
Branches

Time (sec) No. of
Branches

No. of Nodes

15 12.35 286 9500
11 4.2 101 10265
12 4.37 76 6475
21 28.58 202 550
7 3.75 28 400

1	   1	  2	   2	  
3	   3	  

4	  

4	  

5	  
5	  

6	  

6	  

7	   7	  
8	  

8	  

9	  

9	  

10	   10	  

11	  

11	  

Figure 15: Matching produced by our algorithm in two com-
pletely different geometric trees. The dominant geometric
fetures used for matching are length and number of self-
intersections of branches.

elements to be matched are exposed in clusters over multi-
ple iterations. The sliding window matching is used to de-
sign a new algorithm for finding similarities between geo-
metric trees in terms of their geometric as well as topolog-
ical features. Our algorithm has direct application to actual
physical data having tree structure. When the tree structures
representing the physical data undergo metamorphosis, our
matching algorithm can be used to compare the trees to pro-
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vide useful insight about the actual morphology of the phys-
ical system.
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Appendix A: Complexity Analysis of the Sliding Window
Matching Algorithm

A branch decomposition of the source and target trees, which
is a pre-processing step, has a time complexity of O(N2),
where N is number of vertices in each tree, since there are
N2 possible paths.

A minimum weight perfect matching P is computed for
every iteration of the algorithm. Let n be the average num-
ber of branches in each tree, and d be the average number
of children of each branch. Since each leaf node is repre-
sented in exactly one branch, n is also the average number
of leaf nodes in each tree. On an average P is computed the
same number of times as the number of hierarchical levels
of branches, which is log(n). Since the Hungarian Algorithm
has a run time of O(n3), the overall runtime for perfect match
calculation is O(n3log(n)).

The match cost between a pair of branches is recalcu-
lated only when one or more descendants of either branch
has been added to the final match list in the latest iteration.
Since there can be at most n elements in the final match list,
each match cost can be recalculated at most n times. The
time required for calculating each match cost using Hungar-
ian algorithm is O(d3), as each branch has d children on an
average. So, the recalculate cost for each pair of branches is
O(nd3), and since there are n2 possible matches, the overall
runtime for this part of the algorithm is O(n3d3). Assum-
ing the average degree of each node is constant, this can be
approximated to O(n3).

Thus, the overall runtime of the algorithm is
O(n3log(n)) + O(n3), which is O(n3log(n)). Hence,
the overall time complexity including pre-processing is
O(n3log(n)) + O(N2). The space complexity is O(n2), to
store the memoization table used in recursion.
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