
Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
SBIM 2011, Vancouver, British Columbia, Canada, August 5 – 7, 2011.
© 2011 ACM 978-1-4503-0906-6/11/0008 $10.00

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2011)
T. Hammond and A. Nealen (Editors)

Immersion and Embedding of Self-Crossing Loops

Uddipan Mukherjee1, M.Gopi1, and Jarek Rossignac2

1University of California, Irvine, USA
2Georgia Institute of Technology, USA

Abstract
The process of generating a 3D model from a set of 2D planar curves is complex due to the existence of many
solutions. In this paper we consider a self-intersecting planar closed loop curve, and determine the 3D layered
surface P with the curve as its boundary. Specifically, we are interested in a particular class of closed loop curves
in 2D with multiple self-crossings which bound a surface homeomorphic to a topological disk. Given such a self-
crossing closed loop curve in 2D, we find the deformation of the topological disk whose boundary is the given loop.
Further, we find the surface in 3D whose orthographic projection is the computed deformed disk, thus assigning
3D coordinates for the points in the self-crossing loop and its interior space. We also make theoretical observations
as to when, given a topological disk in 2D, the computed 3D surface will self-intersect.

1. Introduction

Given the sketch of a 2D planar curve, the problem of finding
the 3D space curve and the surface bounded by it is mathe-
matically indeterminable, as it has many possible solutions.
It is well known that the basic difficulty is in choosing the
appropriate one. Many sketch-based modeling systems try
to avoid addressing this fundamental problem directly due
to its complexity. These systems provide a fixed canvas to
the user to draw the 2D curve, thus fixing the 3D curve to
be on the canvas. They provide tools to change the shape
of the canvas to enable the user to draw non-planar curves
[IITS, IMT99]. All of these approaches first generate non-
planar 3D curves from the planar 2D curves, which then
become the fundamental component of 3D surface genera-
tion [ZHH96,IH03]. Another approach in reconstructing 3D
models from 2D sketches is to use priors based on geomet-
ric properties like parallelism and perpendicularity of edges
[LS96]. In this approach, the 2D graph drawn by the user is
elevated to 3D using these priors. Other types of priors used
to obain a 3D model from a single 2D sketch are visible con-
tours of the model or cusps and T-junctions [KH06]. Learn-
ing approach is also sometimes incorporated to make use
of correlations between different 3D objects [LS00, SC04].
Recent research on surface generation also use implicit sur-
face representation techniques like creating convolution sur-
face from sketched silhouettes [lTZkF04], or subdivision
surfaces from curve network [SWZ04].

Figure 1: Obtaining a 3D layered surface from a closed-
loop curve. The top left figure is an input to our algorithm.
All the other figures show the generated 3D layered surface
from different viewpoints, such that when this surface is pro-
jected onto an underlying 2D plane, its boundary is the input
2D closed-loop curve.

In spite of all the successes that have been achieved in the
field of sketch based modeling, the fundamental problem of
space curve determination still remains to be a challenging
one. A mathematically sound insight to this problem is pro-
vided in [DDgG05].

Given an open self-crossing 2D curve with known 3D co-
ordinates of its end points, [DDgG05] finds a curvature min-
imizing 3D curve whose orthographic projection is the given
2D curve. In our paper, given a closed self-crossing 2D loop
curve, we find a surface patch in 3D, the orthographic pro-
jection of whose boundary is the given 2D curve. Figure 1
shows an example.

31

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

1.1. Problem Statement

In this paper we are only concerned about planar closed-
loop curves which may intersect itself multiple times. We
call this class of curves self-crossing loops. The concept of
self-crossing loops is explained nicely in [SVW92]. Sup-
pose we paint a planar disk red on one side and blue on the
other side and set our viewing direction perpendicular to the
plane such that we can see only the blue side of the disk.
If we deform the disk without lifting it off the plane then
the deformed disk may self intersect many times but we will
still see only its blue side. The boundary of this deformed
disk forms a self-crossing loop which, we say, is immersible.
We call the deformation pattern of the disk in 2D as an im-
mersion.

However, if during the process of deforming the disk, we
lift it at any time and give it one or more twists, we will be
able to see both the colors. In this case, the boundary of the
twisted disk is still a self-crossing loop but we call it non-
immersible. Figure 2 illustrates these concepts.

Figure 2: Immersible and non-immersible self-crossing
loops. A planar disk is painted blue (visible) on one side and
red (not visible) on the other. Top: The disk is deformed to
form an immersible self-crossing loop. Observe that we can
see only the blue color. Bottom: the disk is twisted to form a
non-immersible loop. Here we can see both the colors of the
disk. The boundaries of the disk form self-crossing loops in
each case.

The problem of finding an immersion from a self-crossing
loop is complicated due to the fact that there may exist many
immersions corresponding to the loop. Figure 3 shows an
example of a self-crossing loop with two immersions.

Figure 3: Left: A self-crossing loop, Center and Right: Two
different immersions of the loop. The different sections of the
immersion are illustrated with different colors in each case.

Our goal is to find an immersion, if one exists, from a self-
crossing loop, and lift it to 3D, avoiding self-intersection of
the 3D surface if possible.

Given a self-crossing loop, [SVW92] can compute all

possible immersions, in which two different triangulations of
same immersion are considered as two unique solutions. Us-
ing this algorithm, the worst case time complexity of finding
both one and all immersions is O(n3) where n is the num-
ber of vertices on the self-crossing loop. On the other hand,
we present an algorithm with worst case complexity of O(k)
to compute one immersion, where k is the number of cross-
ing points, and O(k2) to compute all immersions. Although
polygons can be designed where k can be up to n2, in all
practical cases, k is much less than n. For example, in Figure
4, number of vertices, n of the polygon is 16, while the num-
ber of crossing points, k is 8. Hence our algorithm to find
an immersion from a self-crossing loop is much faster and
more suitable for interactive sketch based modeling applica-
tions than the only existing solution for this problem.

Further, to the best of our knowledge we present the first
algorithm to assign layers to the immersion to lift the self-
crossing loop into a non self intersecting 3D surface patch
called an embedding. We also present many other theoreti-
cal results that improves the current understanding to answer
many open questions related to this problem.

1.2. Main Contributions

Following are the main contributions of our paper:

• Given a self-crossing loop, we determine whether it is
immersible in worst case complexity of O(n2), which was
posed as an open question in [SVW92].

• If the self-crossing loop is immersible, we apply a novel
algorithm, which runs in time linear in the number of
crossing points of the loop, to compute an immersion.

• We lift this 2D immersion to 3D such that self-intersection
in the 3D surface is avoided, if possible. If the 3D surface
does not self-intersect, it is called an embedding. Figure
4 shows the formation of immersion of a self-crossing
loop and the corresponding embedding. The progress of
the shaded region in the sequence of figures traces out a
locus of the deformation pattern of the disk.

• The complexity class of the problem of taking a self-
crossing loop directly to an embedding (instead of first
finding an immersion and then lifting it to an embedding)
is still open [EM09]. As theoretical contribution to this
problem, we observe certain sufficiency conditions on em-
bedding an immersion, that may be useful in answering
this important open problem.

Figure 4: Left: The four figures show how a disk has been
deformed to form an immersion, Right: Corresponding em-
bedding.

32

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

2. Immersion of Self-Crossing Loops

In this section we will describe in detail our algorithm for
computing an immersion from a self-crossing loop, if there
exists one. For a formal definition of the terms immersion
and embedding we refer the reader to [EM09].

2.1. Definitions

The self-crossing loop may be represented as a sequence of
edge-connected vertices along the curve, where the first and
the last vertices are also connected with an edge. We assume
that the vertices in the self-crossing loop are in general po-
sition, i.e. no three consecutive vertices lie on a straight line
and two non-adjacent edges either do not intersect or they
intersect at their relative interiors. We define the intersection
points of the edges as crossing points. We define a border
to be a connected subset of the vertices of the loop between
any two successive crossing points. Observe that the self-
crossing loop divides the space into regions such that there
is no vertex of the loop in the interior of any of the regions.
We refer to these regions as cells. In other words, the cells
are the connected components of the complement of the loop
in R2. The winding number of a cell is an integer denoting
the total number of times the directed self-crossing loop goes
around the cell. Without loss of generality, we assume that if
we start traversing the loop from any arbitrary vertex, the in-
terior of the deformed disk will always be on our right. This
allows us to associate a border with the cell lying to its right.
Figure 5 illustrates these facts.

Figure 5: A self-crossing loop and its crossing points
marked with red dots. The number in each cell denote the
winding number of that cell. The borders of the loop are col-
ored with different colors. The 1-winding number cells are
colored gray, and the 2-winding number cell is colored pink.
The regions not enclosed by the loop have winding number
0. If we start traversing the loop from an arbitrary vertex in
the direction shown, each border is associated with the cell
lying to its right, e.g. the black border is associated with the
winding number 1 region lying to its right.

2.2. Disk Layout

As we have seen in Section 1.1, an immersion is a deformed
topological disk. So, there exists a local homeomorphism be-
tween the disk and an immersion. This homeomorphism or
one-to-one and onto mapping becomes clear if the deformed

disk is unwound to bring back to its original circular shape,
which we call the disk layout. This is shown in Figure 6.
We would like to make the following observations using this
illustration.

• The boundary of the disk layout is represented by the or-
dered sequence of borders of the loop.

• The number of instances of a cell is same as its winding
number. We call each such instance, a face. In Figure 6,
a cell B with winding number two appears two times, as
B1 and B2 in the immersion, i.e. it has two faces. Each
face maps to a distinct non-intersecting region of the disk
layout.

• Each border appears in exactly one cell, and in exactly
one face of that cell, e.g. the blue border in Figure 6
appears in cell B and face B2.

• No two adjacent borders of a cell appear in the same face.
• The segmentation of the disk layout defines a pattern by

which different faces can be glued along their lines of sep-
aration to obtain an immersion (Figure 6).

Figure 6: Top: Immersion unwound to disk layout. Bottom
left: Arcs joining borders of same face. These arcs do not
intersect each other. Bottom right: The different faces of the
loop that can be glued to form an immersion. Note that the
faces map to distinct non-intersecting segments in the disk
layout.

With these observations, the goal is to find the structure
of each face of every cell in the gluing pattern. In other
words, for each face of every cell, we need to find the bor-
ders that appear in it. Once we know which borders appear
together in the same face, these faces can be glued to ap-
propriate faces of the adjacent cells in the correct order to
obtain an immersion. As observed in Figure 6, if we start
with an unpartitioned disk layout and join the borders be-
longing to same faces by arcs, those arcs never intersect one
another and hence the faces divide the disk layout into parti-
tions. This partitioning of the disk establishes local homeo-
morphism between the disk and the regions enclosed by the
given self-crossing loop, thus yielding an immersion.

33

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

2.3. Immersion Algorithm

We present a simple yet powerful recursive algorithm to find
an immersion from a self-crossing loop. Our algorithm finds
the topology of each face of a cell by systematically finding
the group of borders that define a face, and then by gluing
these faces to form an immersion.

We begin the process by finding the groups of borders be-
longing to cells with winding number 1 and joining them by
arcs in the disk layout. These cells have one face each. Hence
this grouping is obvious and the corresponding borders are
connected by arcs in the disk layout, in order. If a cell has
only one border, that border is marked by a self-arc in the
disk layout. In the example of Figure 6, the black and green
borders appear alone in their respective cells and hence they
are marked by self-arcs in the disk layout, whereas the red
and dark blue borders belong to the same 1-winding num-
ber cell and hence they are connected by an arc. Each arc
partitions the disk. Within each partition the borders are re-
cursively processed, from those belonging to lower to higher
winding number cells, ensuring at each step that a newly
drawn arc does not intersect any previously drawn arcs or
join any two adjacent borders of a cell, thereby maintaining
a homeomorphic mapping between the disk and the immer-
sion. Each such arc is called a valid construction. We note
that there will always be a 1-winding number cell to start
the process since we assume that all the input edges are in
general positions.

The pseudo code of our algorithm is given in Algorithm 1.
We begin by constructing three separate circular linked lists
- the c:list consisting of all the borders in the self-crossing
loop in the order of their appearance in the loop starting from
an arbitrary crossing point, the w:list consisting of all the
borders belonging to 1-winding number cells in the same
order as they appear in the c:list, followed by all those be-
longing to the 2-winding number cells in order and so on,
and the f:list containing the borders in each cell in the same
order as they appear in the c:list.

Algorithm 1 DETERMINE IMMERSION
Construct c:list, f:list, and w:list

while (there exists a border in w:list which is not pro-
cessed) do

PROCESS(head[w:list])
end while
if (number of border groups in a cell)>(winding number
of the cell) then

ERROR→ input not a disk
end if

Figure 7 illustrates how our algorithm works with an ex-
ample. In this example, we start with the head of the w : list,
i.e. border number 0. Since it is the only border in its cell it
cannot be grouped with any other border. Next, we move
on to border number 4 and group it with border number

Algorithm 2 PROCESS(M)
F = next[M] in f:list, C = next[M] in c:list, W = next[M] in
w:list

if (F==M) then
REMOVE M from all 3 lists

else if M,F is a valid construction then
RECURSE (M,F)
REMOVE M from all 3 lists

else
N=next[F] in f:list
while F,N is a valid construction do

RECURSE(F,N)
REMOVE F from all 3 lists
F=N, N=next[N] in f:list

end while
REMOVE F from all 3 lists
PROCESS M

end if

Algorithm 3 RECURSE(M,F)
C = next[M] in c:list, W = next[M] in w:list
if ((F==C) AND (F==W)) then

Make (M,F) a valid construction
REMOVE M from all 3 lists

else
if N = next[M] in w:list then

PROCESS (next[M] in w:list)
RECURSE(M,F)

else
PROCESS (next[M] in c:list)
RECURSE(M,F)

end if
end if

12, since they are not adjacent in their cell. Once they are
grouped, we process all the borders lying between them (i.e.
borders numbered 5-11) and come up with another arc join-
ing borders numbered 6 and 10. In a similar way, the rest
of the disk layout is processed, each time finding an arc not
intersecting any previously drawn arc, and recursively pro-
cessing all the borders lying between them.

Each valid construction divides the disk layout and hence
the given loop into two parts – each of which is a self-
crossing loop. By recursively processing each of these new
loops (and their corresponding partitions in the disk), we can
ensure that the local homeomorphism between the region en-
closed by the self crossing loop and the corresponding disk
partition is maintained and thus we get a valid immersion.

The overall time complexity of our immersion finding
algorithm is linear in the number of borders of the self-
crossing loop. At each recursive stage of our algorithm if we
use an exhaustive search to come up with all possible valid
constructions, we can obtain all the possible immersions, if

34

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

Figure 7: Top: A self-crossing loop with its borders numbered and shown in different colors. The c : list, w : list and the f : list
are also shown. Bottom:different stages of the disk layout as higher and higher winding number borders are grouped (borders
which are grouped alone are shown by small self-loop arcs), and the final segmentation of the disk layout.

there exists more than one, in time quadratic in the number
of borders.

As a pre-processing step, we compute all the self-crossing
points of the loop and the winding number of each cell. Our
algorithm does not involve any geometric computation ex-
cept at this preprocessing stage. We use the topological prop-
erties of the structure of immersible self-crossing loops to
find an immersion. Hence our algorithm is extremely robust
against perturbations of vertices in the loop. In contrast the
algorithm presented in [SVW92] is purely geometric, uses
all the vertices of the loop at all stages of computation, and
has an average run time of O(n3) with respect to the number
of vertices as against our worst case time of O(n2).

2.4. Non-Immersible Loops

For a self-crossing loop we can make the following observa-
tions (Figure 8):

• The difference in winding number of two adjacent cells
is always 1. This follows directly from the consideration
that the borders are in general positions, i.e. they do not
overlap.
• The difference in winding numbers of cells lying diag-

onally opposite to each other with respect to a crossing
point is 0 or 2. Also, if the loop is immersible, the sum of
winding numbers of the diagonal cells around a crossing-
point is the same.

We have also observed that any twist in the self-crossing
loop would violate some of the above invariances, and hence

is not immersible. These invariances are checked in our
system to remove those self-crossing loops that are non-
immersible (Figure 9).

Figure 8: Left: a non-immersible loop. The sum of wind-
ing numbers of the diagonal cells around the crossing point
is 1+1=2 and 0+0=0, which are not equal. Right: an im-
mersible loop wherein the sum of winding numbers of diag-
onal cells around each self-crossing is 1+1=2 and 2+0=2.

Figure 9: Non-immersible loops input to our algorithm pro-
duces an error displayed in the form of a small red cross

3. Embedding from Immersion

Once we obtain an immersion, we assign 3D coordinates
to the self-crossing loop to form a 3D layered surface. If
this surface is non-self-intersecting, it defines an embedding.
However, the problem of finding an embedding from an im-
mersion is NP complete [EM09]. Hence we are not always

35

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

guaranteed to obtain an embedding from an immersion in
polynomial time. We make a few important observations as
to when such an operation is possible in polynomial time. On
the other hand, the computational complexity of finding an
embedding directly from the self-crossing loop (not through
an immersion) is still unknown. Our observations may be
used to solve this important open problem.

3.1. Edge-collapsed graph

For each cell in the immersion a simplified layout is obtained
by collapsing the arcs (valid constructions) in the disk layout
corresponding to that cell. We call this an edge collapsed
graph. Note that the borders which are not part of any drawn
arcs in the disk layout appear in this edge-collapsed graph as
individual nodes. Figure 10 shows the process of obtaining
such a graph from the disk layout and some examples of
edge-collapsed graphs. If the edge-collpased graph for each
cell has a linear spanning subtree, then an embedding can be
obtained from the immersion.

Figure 10: Top: obtaining an edge-collapsed graph of a
cell from the circular layout. Bottom: examples of edge-
collapsed graphs - the left one does not have a linear
spanning subtree and hence cannot produce an embedding,
whereas the other two can.

As an example, let us consider a simple edge collapsed
graph with 3 nodes as shown in Figure 11(left).

Figure 11: Edge-collapsed graph for two different cells. The
nodes in each graph represent distinct faces of the cell. The
labels for the nodes with assigned integer values represent
the layer number of the face. The graph on the left is linear
with three nodes and guarantees an embedding, whereas the
graph on the right does not have a linear spanning subtree
and does not guarantee an embedding

Each node in Figure 11(left) represents a face of the cell
concerned. Let the 3D height or layer of the faces be named
a, b and c as shown (without loss of generality let us as-
sume that a, b, c are integers and that the faces have fixed

layers). Each edge joining two nodes in Figure 11 repre-
sents the deformation pattern of the part of the disk between
the two faces of the same cell representing those two nodes.
Hence, this part of the disk must have a height monotoni-
cally increasing or decreasing between the two faces of the
cell concerned. Thus, in Figure 11(left) if b lies between a
and c, no part of the loop intersects itself, which is necessary
for an embedding. This can be extended to a linear graph
with any number of nodes and a consistent monotonic layer-
ing for all cells is guaranteed to produce an embedding. But
if b does not lie between a and c, there is a chance that the
disk intersects itself at some point. So given a disk layout of
the self-crossing loop, we cannot say for sure whether it pro-
duces an embedding if b does not lie between a and c. This
leads us to the following lemma.

Lemma: A linear spanning subtree in an edge-collapsed
graph for every cell is sufficient to produce an embeddable
solution.

Now suppose we have an edge collapsed graph which
does not have a linear spanning subtree. The simplest form is
shown in Figure 11(right) with layer numbers correspond-
ing to each node.

From the above analysis we can say that any linear sub-
graph of the edge collapsed graph must be monotonically
layered to guarantee an embedding. In Figure 11(right) we
have 3 linear sub-graphs with layers a− b− c, a− b− d
and c−b−d, each of which must be monotonically layered.
So, in order to obtain a guaranteed embedding the following
three constraints have to be satisfied:

1. b lies between a and c, i.e. a > b > c or a < b < c
2. b lies between a and d, i.e. a > b > d or a < b < d
3. b lies between c and d, i.e. c > b > d or c < b < d

However, the above three constraints can never be satis-
fied simultaneously. e.g. if a > b > c, then a > b > d, and
from constraint 3 above, we get c > b > d which is a con-
tradiction. So, if the spanning subtree of the edge-collapsed
graph is not linear, an embedding is not guaranteed.

Figure 12 shows two examples which produce an em-
beddable solution, and an example which may or may not
produce an embeddable solution depending on the nature of
the edge collapsed graph.

3.2. Summary of Observations

An edge-collapsed graph with a linear or 2-constrained
spanning subtree is sufficient to produce an embedding. The
problem of finding whether a k-constrained spanning sub-
tree exists in a graph is NP complete and hence the prob-
lem of finding an embedding from an immersion, which is
an instance of finding a 2-constrained spanning subtree in
the edge collapsed graph of the immersion, is NP complete.
This agrees with [EM09] that it is NP complete to obtain an
embedding from an immersion. Also, the problem of finding

36

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

Figure 12: Examples of edge collpased graphs produced by different deformed disks. The cells for which the edge collapsed
graphs are drawn are highlighted in red: The first two columns have linear spanning subtrees required for embedding, whereas
the loop in the last column may (upper graph) or may not (lower graph) be embeddable depending on the edge collapsed graph
of the respective immersion

an embedding directly from the self-crossing loop without
finding the immersion is still open and our observation on
the sufficiency conditions on obtaining an embedding from
an immersion may be used to answer this important open
problem.

4. Our Implementation of Embedding

In order to obtain an embedding we first find an edge col-
lapsed graph for every cell. Then from this edge collapsed
graph we find the linear subgraph and the appropriate layer-
ing of faces based on this subgraph. Finding the linear span-
ning subgraph is a Hamiltonian path problem, but since the
number of faces for each cell (which is same as the winding
number) is usually very very small, finding a linear subgraph
is not very expensive, and hence exhaustive listing of all pos-
sible spanning subgraphs is possible.

Our interactive sketching interface takes as input a set
of 2D free-form curves forming the self-crossing loop. The
curves form parts of the entire loop and need not be in or-
der. Since we require the vertices of the loop to be in general
positions, if two edges intersect at their end points, the cor-
responding vertex is slightly perturbed. This ensures that the
edges intersect only in their relative interior. The final output
once generated, can be viewed from different directions and
can be zoomed in or out. Figure 13 illustrates the operation
of our system with several examples.

5. Conclusion and Future Work

We have designed a novel and efficient algorithm to find an
immersion from a self-crossing loop and assign 3D layers to
the immersion to obtain an embedding. In the process, we
have made several important theoretical observations which
may be used as future work to address the open problem of
directly obtaining an embedding from a self-crossing loop.

References
[DDgG05] DAS K., DIAZ-GUTIERREZ P., GOPI M.: Sketching

free-form surfaces using network of curves. In Eurographics
Workshop on Sketch-Based Interfaces and Modeling (2005). 1

[EM09] EPPSTEIN D., MUMFORD E.: Self-overlapping curves
revisited. In SODA ’09: Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (2009), pp. 160–
169. 2, 3, 5, 6

[IH03] IGARASHI T., HUGHES J. F.: Smooth meshes for sketch-
based freeform modeling. In Proceedings of the 2003 symposium
on Interactive 3D graphics (2003), I3D ’03, pp. 139–142. 1

[IITS] IJIRI T., IGARASHI T., TAKAHASHI S., SHIBAYAMA E.:
Sketch interface for 3d modeling of flowers. In ACM SIGGRAPH
2004 Sketches, SIGGRAPH ’04. 1

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: a
sketching interface for 3d freeform design. In Proceedings of
ACM SIGGRAPH (1999), pp. 409–416. 1

[KH06] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d
free-form shapes from complex sketches. In ACM SIGGRAPH
2006 Papers (2006), SIGGRAPH ’06, pp. 589–598. 1

[LS96] LIPSON H., SHPITALNI M.: Optimization-based recon-
struction of a 3d object from a single freehand line drawing.
Computer-Aided Design 28 (1996), 651–663. 1

[LS00] LIPSON H., SHPITALNI M.: Conceptual design and anal-
ysis by sketching. Artif. Intell. Eng. Des. Anal. Manuf. 14
(November 2000), 391–401. 1

[lTZkF04] LAN TAI C., ZHANG H., KIN FONG J. C.: Proto-
type modeling from sketched silhouettes based on convolution
surfaces. Computer Graphics Forum 23 (2004), 71–83. 1

[SC04] SHESH A., CHEN B.: Smartpaper: An interactive and user
friendly sketching system. Computer Graphics Forum 23 (2004),
301–310. 1

[SVW92] SHOR P. W., VAN WYK C. J.: Detecting and decom-
posing self-overlapping curves. Comput. Geom. Theory Appl. 2,
1 (1992), 31–50. 2, 5

[SWZ04] SCHAEFER S., WARREN J., ZORIN D.: Lofting curve
networks using subdivision surfaces. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry pro-
cessing (2004), pp. 103–114. 1

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
Sketch: An interface for sketching 3d scenes. In Proceedings
of SIGGRAPH 96 (Aug. 1996), pp. 163–170. 1

37

Uddipan Mukherjee & M.Gopi & Jarek Rossignac / Immersion and Embedding of Self-Crossing Loops

Figure 13: Snapshots of our sketching interface. Left most column shows the 2D self-crossing loop input by the user. All the
other columns show the corresponding 3D layered surface produced from difeerent viewpoints.

38

