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Abstract

Sharp features such as edges and corners play an important role in the perception of
3D models. In order to capture them better, we propose quadric loss, a point-surface loss
function, which minimizes the quadric error between the reconstructed points and the
input surface. Computation of Quadric loss is easy, efficient since the quadric matrices
can be computed apriori, and is fully differentiable, making quadric loss suitable for
training point and mesh based architectures. Through extensive experiments we show
the merits and demerits of quadric loss. When combined with Chamfer loss, quadric
loss achieves better reconstruction results as compared to any one of them or other point-
surface loss functions.

Introduction

Xiv:1907.10250v1 [cs.Gg

?-B)llowing the tremendous success in image classification and detection, deep learning based
techniques have been widely extended to 3D data, opening up numerous 3D applications
such as 3D object classification, segmentation, shape representation and correspondence
finding to name a few. In this work we focus on shape representation, particularly on learning
a better embedding or shape representation of 3D models using an auto encoder.

Early 3D deep learning techniques use 2D and 3D convolution modules to design their
network architectures. Recent techniques extend such convolution modules to handle irreg-
ular representations such as points [17, 18] and meshes [4, 15, 19, 22]. Together with these
architectures, different loss functions have been proposed for 3D reconstruction. At a high
level, they can be classified as being between two points (e.g., L1, Earth Mover Distance
[5]) or between a point and a surface (e.g., surface loss [29]). Among these loss functions,
Chamfer loss [5, 29] has been widely used for reconstructing 3D models.

While these loss functions work well in maintaining the overall structure of the 3D
model, they do not preserve high-frequency information such as edges and corners. To ad-
dress this issue, we propose a novel loss function, quadric loss, for preserving such detailed
structures. Inspired by mesh simplification techniques, quadric loss is defined as the sum
of squared distances between a reconstructed point and planes defined by triangles incident
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(a) Input Point Cloud (b) Chamfer (c) Chamfer + Quadric (d) Original Mesh

Figure 1: (a) Input point cloud reconstructed using an auto-encoder network with (b) Cham-
fer loss alone and (c) Chamfer + Quadric loss. Reconstructed meshes are generated using
Poisson surface reconstruction on output point cloud.

to its corresponding point in the input mesh. Intuitively, the quadric loss penalizes the dis-
placement of points along the normal direction of those planes, maintaining sharp edges and
corners (Fig. 1).

To demonstrate the benefits of quadric loss, we conduct experiments with 3D CAD mod-
els, and compare various loss functions both qualitatively and quantitatively. Overall, we find
that the combination of Chamfer and our quadric loss shows the best result, since Chamfer
loss maintains the overall structure and point distribution, while the quadric loss preserves
sharp features.

To summarize, our main contributions in this work are:

e We propose a new point-surface loss named guadric loss, which preserves sharp fea-
tures such as corners and edges in the reconstructed models. It is fast, easy to compute
and is fully differentiable. It does not introduce any hyperparameters and can be used
with most existing point/mesh based architectures without modification.

e We evaluate our loss function extensively and also provide its geometric interpretation.

e We compare our quadric loss with other point-surface loss functions and the popular
Chamfer loss and discuss in detail the merit and demerit of each.

2 Related Works

2.1 Learning Shape Representation

There is a rich literature for learning compact 3D shape representations using deep learning
techniques. Prior works [7, 14, 21, 25] have used image and voxel based representations
of 3D models to learn a discriminative representation for the task of 3D object recognition,
classification and generation. Although their structured representations facilitate the use of
traditional 2D and 3D convolution, they are not readily available for handling complex and
high resolution models. On the other hand, part-based approaches [13, 16, 26] can produce
shapes with complex structures, but the level of detail is restricted to the components and
primitives used.

Recently, convolution has been extended to more unstructured representations like 3D
point datasets and meshes. PointNet [17] and PointNet++ [18] have been widely used as
an encoder to achieve superior performance on various tasks such as object classification


Citation
Citation
{Girdhar, Fouhey, Rodriguez, and Gupta} 2016

Citation
Citation
{Li, Su, Qi, Fish, Cohen-Or, and Guibas} 2015

Citation
Citation
{Su, Maji, Kalogerakis, and Learned-Miller} 2015

Citation
Citation
{Wu, Zhang, Xue, Freeman, and Tenenbaum} 2016

Citation
Citation
{Li, Xu, Chaudhuri, Yumer, Zhang, and Guibas} 2017

Citation
Citation
{Nash and Williams} 2017

Citation
Citation
{Wu, Wang, Lin, Lischinski, Cohen-Or, and Huang} 2018

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}


AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 3

°
S

X

Xa

i=1

7
Lyormal = Z |(3 - 931) : m st"face = mini:[lj]q)(s, fz) Lyyad = STQtS
i=1
(a) Normal Loss (b) Surface Loss (c) Quadric Loss

Figure 2: Computation of point-surface losses: Let the reconstructed point s correspond to
the point ¢ in the input mesh. (a) Normal loss computes the inner product between the edge
formed by s and x; and the ground truth normal vector 7 at ¢; (b) Surface loss computes the
point-triangle distance ® between s and f, where f represents a triangle and not a plane,
and takes the minimum of them with different triangles; (c) Quadric loss (our contribution)
computes the sum of the square of the distance between s and each of the plane p (p =
[a,b,c,d]T) formed by the triangle incident at 7 using the quadric matrix ¢; which is computed
as q; = p,-piT. Please see Eq. 1 for more details.

[17, 24], segmentation [17, 24], point set generation [1, 28], shape correspondence [8] etc.
Mesh based networks have also been used to learn embeddings for shape completion [4, 15]
and shape deformation [19, 22].

Since point and mesh based representations, when compared to voxel-based representa-
tions, are light-weight, flexible in terms of reconstructing complex models and scale well to
high resolution models, we propose a loss function which can be used by such networks to
further enhance the embedding and reconstruction quality of 3D models.

2.2 3D Reconstruction Losses

Losses commonly used with point and mesh based networks for 3D reconstruction can be
broadly classified into two categories - between two points or between a point and a surface.
Point based Loss: Point based loss functions compute the dissimilarity between two pointset
distributions. Losses like L1 [4] and L2 [8, 15] require both one-to-one correspondence
and the cardinality of the two pointsets to be the same. Earth movers distance (EMD) or
Wasserstein metric [5] is similar to these losses as it requires the input cardinality between
pointsets to be the same. It solves an optimization problem where it computes a bijection
between the two pointsets. However, a major drawback of EMD is that it is both memory
and compute intensive, hence is usually approximated [5]. Chamfer distance (CD) [5, 9, 23],
which has become a standard for reconstructing 3D objects, computes the shortest distance of
each point in one pointset to the other pointset. This distance is computed in both directions.
It does not require the cardinality of the input points to be the same nor does it require any


Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Wang, Sun, Liu, Sarma, Bronstein, and Solomon} 2018{}

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Wang, Sun, Liu, Sarma, Bronstein, and Solomon} 2018{}

Citation
Citation
{Achlioptas, Diamanti, Mitliagkas, and Guibas} 2018

Citation
Citation
{Yang, Feng, Shen, and Tian} 2018

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry} 2018{}

Citation
Citation
{Dai and Nie{T1ss }ner} 2018

Citation
Citation
{Litany, Bronstein, Bronstein, and Makadia} 2018

Citation
Citation
{Ranjan, Bolkart, Sanyal, and Black} 2018

Citation
Citation
{Tan, Gao, Lai, Yang, and Xia} 2018

Citation
Citation
{Dai and Nie{T1ss }ner} 2018

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry} 2018{}

Citation
Citation
{Litany, Bronstein, Bronstein, and Makadia} 2018

Citation
Citation
{Fan, Su, and Guibas} 2017

Citation
Citation
{Fan, Su, and Guibas} 2017

Citation
Citation
{Fan, Su, and Guibas} 2017

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry} 2018{}

Citation
Citation
{Wang, Zhang, Li, Fu, Liu, and Jiang} 2018{}


4 AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS

one-to-one correspondence. Although CD works well at recovering the overall structure,
it does not preserve sharp features like corners and edges, and often results in collapse of
smaller structures [4].

Point-Surface based Loss: Point-surface based loss functions try to minimize the distance
between the output reconstructed point and the input surface. Yu et al. [29] propose surface-
loss (point-triangle), which computes the minimum of the shortest distances between an
output point and each triangle in a subset of triangles defining the input mesh (Fig 2b).
Similar to surface-loss, Yu et al. [29] also propose edge-loss, which requires the edges
in the input model to be manually annotated. Wang et al. [23] propose normal-loss to
incorporate higher-order features in their reconstruction. It minimizes the inner product of
the edge formed from the output point and the neighbours of the corresponding input point
with its normal vector. In other words, it requires the edges between the output point and
the neighbours of the corresponding input point to be orthogonal to the ground truth normal
vector (Fig 2a).

Departing from these prior approaches, we propose a new point-surface based loss func-
tion named quadric loss, which encourages sharp corners and edges to be preserved in the
output reconstruction (Fig 1 and Fig. 4). Unlike edge-loss, quadric loss does not require the
edges to be annotated in the input models. Quadric loss minimizes the distances between
the output point and the planes defined by the triangles incident to its corresponding point in
the input mesh (Fig 2c). It is fast and easy to compute as oppose to surface loss for which
one needs to consider all the seven cases, as the point which minimizes the point-triangle
distance can be on the 3 edges, 3 vertices or inside the triangle [29]. Quadric loss is also
differentiable making it amiable for training via back propagation.

3  Quadric Loss

Quadric error metric was originally proposed for mesh simplification [6, 20], i.e, the task
of reducing of a mesh with a high polygon count to a low polygon count while preserving
as much visual geometric detail as possible. Quadric error computes the squared distance
between a point and a plane in IR?. Inspired by this quadric error metric, we propose quadric
loss, a point-surface loss function, which penalizes the reconstructed points in the normal
direction, thereby preserving sharp edges and corners in the output reconstruction as shown
in Figure 1.

Background: Let a point s be represented in homogeneous coordinates [x,y,z,1]7, and a
plane p be represented as [a,b,c,d]” where a® + b +¢> = 1. The distance of s from p is
given by ax + by + cz + d, which can be computed as p”s. The square of the distance of s
from p is given by

(P"s)? = (p"s)(p"s) =s"(pp")s = 5" Qps, (1)

where 0, is a symmetric matrix called the quadric matrix [6], determined only by the plane
and not by the point. Given a set of planes py, p2, ... px, the sum of the squared distance of s
from this set of planes is given by

As)=Ys"Qis=s" (Y. Qi)s=5"0s, where Q=Y 0. @)

It should be clear that in a mesh, the quadric error of a vertex s from the planes defined by
the triangles incident on s is zero.
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Computation: Given an input mesh M with V;, € IRV vertices and a set of reconstructed
points Vy,; € IR¥3 | let s be a reconstructed point corresponding to input vertex 7. We want
s to be on all the triangles incident on 7 just as ¢ is on those planes in the input mesh. So the
quadric error of s from the planes defined by the triangles incident on its corresponding point
t, namely sT QOs, has to be minimized. We call 5T Qs as the quadric loss, which we compute
between V;, and V,,, as the following:

1
Lyaa =5 X 5" Qis. 3)
SEVour
teViy,

Geometric Interpretation: The iso-value surfaces s’ Qs defined by the quadric matrix Q at
the input vertex ¢, represents a family of ellipsoids centered at ¢, for which one of the three
axes corresponds to the normal vector of the surface at . The length of the other two axes
are inversely proportional to the curvature of the surface in those directions. For example, in
a planar region, the length of the ellipsoidal axes is infinity along the plane and zero along
the normal vector direction. In other words, the reconstructed point can be anywhere on the
plane, but any displacement along the normal vector direction will introduce more quadric
loss. For vertices along a sharp, straight edge of a 3D model, the quadric error ellipsoid will
have infinite length along the edge and zero length for the other two axes. In other words, the
reconstructed point can be placed anywhere along the straight edge for the quadric error to
be still zero, but any displacement away from the edge will incur a loss. A similar argument
holds for a pointed corner of a 3D model. The quadric ellipsoid will be very small, restricting
the freedom of placement of the reconstructed point as shown in Figure 3. Hence, unlike
Chamfer and L2 loss which are spherical losses - points equidistant from the input vertex

= L2 Loss = L1 Loss == Quadric Loss

Figure 3: Geometric Interpretation of quadric loss: Quadric loss is an ellipsoidal loss and
it penalizes the reconstructed points more in the normal direction. Here we show the iso-
error envelope of Quadric, L1 and L2. For illustration purposes, we draw iso-errors in 2D
on few points (yellow) on the input surface. Points lying on flat planes would ideally have
ellipsoids with 0 minor axis and co major axes lengths, i.e the reconstructed points can be
placed anywhere on the plane. Note that the ellipsoid for points on sharp features like corners
is very small compared to L1 and L2, ensuring the reconstructed points to preserve such
features.
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(a) Input (b) Surface (c) Normal (d) Ours (e) Chamfer

Figure 4: Effect of Point-Surface loss: Reconstruction results (2500 points) on example 3D
models from the test set with different loss functions. In comparison to Chamfer focusing
on preserving the input point distribution, our quadric loss encourages points to be on edges
and corners. On flat planes (like the top and bottom faces of the cylinders in the bottom row)
reconstructed points minimize the quadric error by lying on the plane, but can be outside
the ground truth model. Such artifacts can be avoided by the combination of quadric and
Chamfer loss (top row of Fig 5).

have equal loss, quadric loss is an ellipsoidal loss which penalizes displacement of points
more in the normal direction.

4 Experiments

In this section, we present the results of training an auto-encoder with various point-surface
loss functions. Specifically, we compare our quadric loss with surface loss [29] and nor-
mal loss [23] for the task of shape reconstruction. We analyze the reconstruction results
both qualitatively and quantitatively, and also compare our proposed loss with the popular
Chamfer loss.

4.1 Dataset

To train the autoencoder, we use the recently published ABC dataset [12]. Although this
dataset contains more than 1 million high quality CAD models of mechanical parts, we
randomly selected 5000 CAD models for our experiment. The reason of using ABC dataset
over other 3D shape repositories like ShapeNet [2] and ModelNet40 [27] is the presence of
sharp edges and corners, which are commonly found in mechanical parts (Fig. 5). As some
of the models comprised of multiple disconnected components, we separated each model into
its connected components such that each model has a single mesh. This increased our dataset
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CD Metro
Losses
median max median  max
Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86  398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 10> and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details

Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with £ = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.
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(a) Input (b) Chamfer (c) Chamfer + Surface  (d) Chamfer + Normal  (e) Chamfer + Quadric

Figure 5: Reconstruction results of 3D models from the test set. To obtain a mesh from the
reconstructed point clouds, we follow a similar procedure as AtlasNet [9]. i.e. we shoot rays
at the model from infinity to obtain a dense sample of points followed by Poisson surface
reconstruction (PSR) [10]. Chamfer loss when added to surface, normal and quadric loss
improves the reconstruction result as compared to them individually. Note, sharp edges and
corners are achieved with quadric and Chamfer togather. For more qualitative results please
see the supplementary material.

4.3 Evaluation Metric

To evaluate the quality of the reconstructed shapes, we compare it with the ground truth
shapes using two criteria. First, we compare the Chamfer distance (CD) [5] between the
input and output point clouds. CD alone is a necessary but not a sufficient condition for a
good reconstruction; CD can be minimized by assigning just one point in one point cloud
to a cluster of points in the other point cloud. Hence, we also compare the Metro error
between the input and output meshes using the publicly available software [3]. Simply put,
it computes the Euclidean distance between two meshes by sampling points on them. We
report the maximum distance between the two meshes because outliers dictate the visual
quality and fidelity of the reconstructed mesh.

4.4 Shape Reconstruction

We evaluate the learnt embedding by analyzing the reconstruction quality of the 3D models.
We report the quantitative results in Table | where the results are from computing the median
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and the maximum values of all models in the test set.

Reconstruction without Chamfer: In order to study the effect of various point-surface
losses, we train the auto encoder with surface, normal, and quadric losses independently
without chamfer loss. We report the qualitative results in Figure 4. As compared to surface
and normal loss, quadric loss alone reconstructs the models much better. Through our ex-
tensive experiments we find training of normal loss also to be much difficult as compared to
surface and quadric loss. i.e. it does not converge. Quadric loss in comparison to surface loss
preserves the sharp features better while surface loss is able to achieve better point distribu-
tion. As surface loss computes the closest triangle to the reconstructed point and minimizes
that distance, it is difficult for it to reconstruct sharp features like edges and corners.

As quadric loss encourages more reconstructed points to lie along the edges and corners,
it has a higher CD than network trained with Chamfer loss alone. Also, notice the small
difference in Metro error between Chamfer and quadric loss. This is because Metro error
is computed by sampling the meshes and not the points (like CD). Also, quadric loss with
AtlasNet decoder is able to reconstruct the patches (N learnt parameterizations) close to the
input surface. This demonstrates that Metro error does not care about the point distribution
as long as the output mesh surface is close to the input mesh surface. Hence, a good re-
construction should preserve both the point distribution (low CD) and overall structure (low
Metro).

Reconstruction with Chamfer: Chamfer loss when added improves reconstructions based
on surface, normal, or quadric losses (Fig. 5). Quadric with chamfer achieves the best recon-
struction results overall. Addition of quadric to Chamfer loss further reduces the maximum
CD from 40.87 to 36.78. This is because as Chamfer loss tries to preserve the point distri-
bution, quadric loss tries to preserve sharp features like edges and corners. Hence, models
reconstructed using both quadric and Chamfer enjoy best of both worlds - sharp features and
good point distribution.

5 Conclusion

In this work we propose a new point-surface loss function, named quadric loss, which penal-
izes the displacement of points in the normal direction thereby preserving sharp features like
edges and corners in the reconstructed models. Quadric loss is easy to compute, fully dif-
ferentiable and can be integrated into most point and mesh based architectures. Quadric loss
can also successfully reconstruct models having no sharp features. However, as quadric loss
is an ellipsoidal loss, it cannot preserve the input point distribution. For points on the planar
faces of a surface, since the quadric loss is zero anywhere on the plane, the reconstructed
points may lie outside the extents of the planar face. Hence, quadric loss should always be
accompanied with a spherical loss like chamfer loss which preserves the input point distri-
bution. Note that Chamfer has its own weakness; its value could be minimized by assigning
one point to a cluster of points. Depending on the application, these two losses could be
weighted appropriately. Since Chamfer and quadric loss functions complement each other,
combining these two loss functions achieve better embedding than using any one of them.

Acknowledgements. Prof. Yoon was supported in part by NRF-2017M3C4A7066317 and
NRF/MSIT (No. 2019R1A2C3002833).
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