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Abstract

In this paper, we present a method for photometric self-
calibration of a projector-camera system. In addition to
the input transfer functions (commonly called gamma func-
tions), we also reconstruct the spatial intensity fall-off from
the center to fringe (commonly called the vignetting effect)
for both the projector and camera. Projector-camera sys-
tems are becoming more popular in a large number of ap-
plications like scene capture, 3D reconstruction, and cal-
ibrating multi-projector displays. Our method enables the
use of photometrically uncalibrated projectors and cameras
in all such applications.

1. Introduction
Projector-camera systems are commonly used in many

applications like scene capture, 3D reconstruction, virtual
reality, tiled displays and so on [17, 15, 19, 27]. The cam-
eras and projectors used in these applications often require
pre-calibration to assure accurate results. One particularly
good example is that of multi-projector displays which al-
low users to move away from the rigidness of computer
monitors and fixed displays [24, 19]. Cameras are now used
regularly to calibrate such displays geometrically and pho-
tometrically [27, 2, 3, 6, 9, 11, 12, 13, 22, 21, 23, 26, 27, 10,
20, 18].

In this paper we present a self-calibration method that
estimates the photometric parameters of an uncalibrated
projector-camera system. The photometric calibration pa-
rameters of a projector/camera are its intensity transfer
function and the spatial intensity variation function [8, 12].
The spatial variation, marked by a characteristic intensity
fall-off from the center to fringe, is commonly called the vi-
gnetting effect. The vignetting effect need not be symmet-
ric, especially for projectors, where it depends on the pro-
jector position, orientation, and the reflectance/tranmissive
property of the screen. Our method estimates both the in-
tensity transfer function and the spatial intensity variation
for both camera and projector.

1.1. Related Work

Earlier work in photometric calibration of projection-
based displays involved calibrating the projectors using ei-
ther a precision optical instrument or a calibrated camera.
[9, 26] find the projector intensity transfer function by us-
ing an expensive photometer or spectroradiometer. How-
ever, since photometers and radiometers can only measure
one spatial location at a time, these methods cannot capture
the spatial intensity variation of projectors. [20] uses a cal-
ibrated camera to estimate the projector intensity transfer
function. First, the high dynamic range imaging technique
described in [4, 16] is applied to estimate the camera’s in-
tensity transfer function. Once the camera is calibrated, the
same high dynamic range technique is applied to recover the
projector’s intensity transfer function using this calibrated
camera. The spatial intensity variation of the projector is
then estimated by methods presented in [13, 11]. This en-
tire method, however, assumes that the vignetting effect of
the camera is negligible. This is only true for narrow aper-
tures; hence, the camera is set to use a narrow aperture.

More recently, [25] presents the first method that esti-
mates the intensity transfer functions of camera and pro-
jector by using isointensity curves in areas where a second
projector overlaps the first. Since this method requires a
second projector to compute the intensity transfer functions
of a projector or camera, it cannot be applied to a single
projector-camera system.

Achieving accurate photometric calibrations is an impor-
tant issue even just for cameras. Several computer vision
methods exist today to estimate the input transfer function
of a camera [16, 5, 7, 14]. However, these use high dy-
namic range imaging in an outdoor setting where the user
has relatively little control of the surrounding environment.
Further, the problem of estimating the vignetting effect has
been largely ignored. Not knowing the vignetting function
forces applications to use their cameras at narrow apertures
where the vignetting effect is negligible. Images taken in
such settings have more noise than those taken at wider
apertures. Thus, these applications have to address inaccu-
racies resulting from low signal to noise ratio. [1] presents
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Figure 1. The transformation process of an image as it passes through a projector-camera system.

(a) (b) (c)

Figure 2. (a) The estimated camera input transfer function fc. (b) The estimated projector input transfer function fp. (c) The estimated
spatial intensity variation due to projector, screen, and camera L.

an elaborate model that can estimate the vignetting effect
for a camera whose input transfer function is already known
or recovered. However, they require using a lens with high
zoom capability.

1.2. Main Contributions

In this paper, we present a self-calibration technique for a
projector-camera pair. To the best of our knowledge, this is
the first work that estimates both the intensity transfer func-
tion and the vignetting effect of both projector and camera
without using any other devices or physical props other than
just a projector-camera pair. Any application that uses ei-
ther a camera or a projector (or both) can thus benefit from
this work. For example, one can now use photometrically
uncalibrated cameras when using different photometric cal-
ibration techniques for single or multi-projector displays
[13, 20]. Further, it can be also be used to photometrically
calibrate cameras for any traditional computer vision ap-
plications like scene capture, 3D reconstruction, etc. Our

method achieves a full photometric calibration of a cam-
era by estimating both the input transfer function and the
vignetting effect. This is achieved by using a projector, a
device which is easily available anywhere today.

In the next section, we present the algorithm for estimat-
ing the photometric parameters of a projector-camera sys-
tem. In Section 3, we present some example applications
of how to use the calibrated devices. Finally, we conclude
with future work in Section 4.

2. The Method
Our algorithm makes the following assumptions:

1. We assume a geometrically calibrated projector-
camera system where a pixel (u, v) in the camera co-
ordinate system is related to a pixel (x, y) in the pro-
jector coordinate system by a linear or non-linear warp
G(x, y) = (u, v). G can be determined by any stan-
dard geometric calibration method [27].
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Figure 3. The camera vignetting effect estimated after separation of parameters at (a) f/16, (b) f/8, (c) f/4 and (d) f/2.8. Note that the
vignetting effect becomes more pronounced as the aperture size increases from (a) to (d).

2. Projectors and cameras are time-invariant devices
whose photometric parameters do not change tempo-
rally.

3. The screen reflectance is time-invariant. It does not
change when the power of light changes. Essentially,
if the power of light increases, the radiance towards the
camera increases proportionally.

Consider a spatially uniform grayscale input to the pro-
jector. Let the grayscale level be denoted by i. As per the
model presented in [8], the uniform image is first trans-
formed by a spatially invariant input transfer function of
the projector, fp, to create a spatially uniform output, fp(i).
Next, the projector optics introduces a spatially dependent
but input independent intensity variation P (x, y). This re-
sults in a spatially varying image fp(i)P (x, y). This image
is further modulated by the screen reflectance/transmissive
function S(x, y) to create another spatially varying im-
age fp(i)P (x, y)S(x, y). The function is reflectance or
transmissive depending on whether the system is a front
or rear projection respectively. The light from the screen
then reaches the camera. The amount of light accepted
by the camera is scaled by its exposure time tj , where
j indexes different exposure times. The different expo-
sures are instrumented by changing the shutter speed of
the camera. This produces an image fp(i)P (x, y)S(x, y)tj
that passes through the camera optics which introduces
another spatially dependent variation, C ′(u, v). The im-
age thus generated is fp(i)P (x, y)S(x, y)tjC ′(u, v). To
define the image in the projector coordinate space, we
use (u, v) = G(x, y) to define C(x, y) = C ′(G(x, y)).
The image in projector coordinate space is then given by
fp(i)P (x, y)S(x, y)C(x, y)tj . Finally, this image is trans-
formed by the spatially independent input transfer function
of the camera, fc, to generate the grayscale value recorded
by the camera Z. Thus, Z is a function of the input i, the
exposure time index j, and the spatial coordinates (x, y).
This is illustrated in Figure 1. The final equation is

Z(i, j, x, y) = fc(fp(i)P (x, y)S(x, y)C(x, y)tj). (1)

In this equation, we first combine all of the spatially depen-
dent terms into one term L(x, y) = P (x, y)S(x, y)C(x, y).

This represents the combined spatial variation introduced
by the projector, screen, and camera optics in a closed form.
Equation 1 thus becomes

Z(i, j, x, y) = fc(fp(i)L(x, y)tj). (2)

For cameras, the intensity transfer function is monotonic
[4], and hence it is invertible. Note that the same is not
true for projectors [12]. Assuming invertible fc, the above
equation becomes

f−1
c (Z(i, j, x, y)) = fp(i)L(x, y)tj . (3)

Taking the natural logarithm of both sides we get,

lnf−1
c (Z(i, j, x, y)) = lnfp(i)+ln(L(x, y))+ln(tj). (4)

To simplify the notation, we define hc = lnf−1
c and hp =

lnfp, The above equation then becomes

hc(Z(i, j, x, y)) = hp(i) + ln(L(x, y)) + ln(tj) (5)

where i ranges over the grayscale inputs, j ranges over the
exposure times, and (x, y) ranges over the spatial coordi-
nates of the projector. In this equation, Z and tj are known
while hp, hc and L are unknown. We want to recover hp, hc

and L that best satisfy Equation 5 in a least-squares sense.
Note that recovering hp and hc involves solving the func-
tions for a finite number of samples in the complete range
of input values. Varying i and tj results in different values
of Z for each pixel (x, y). We can use this to setup a system
of linear equations. By solving this system we can recover
hp, hc, and L as illustrated in Figure 2.

2.1. Separation of Spatial Parameters

The recovered L(x, y), as shown in Figure 2, is the
combined spatial intensity variation introduced by P (x, y),
S(x, y), and C(x, y). In this scenario, the spatial variation
C(x, y) is a function of the camera aperture setting. The vi-
gnetting effect becomes increasingly pronounced for larger
aperture sizes. This happens since at wider apertures the
camera deviates considerably from the pinhole model [1].

To assure a near uniform C(x, y), scene capture meth-
ods operate with the camera set to a narrow aperture setting



(a) (b)

Figure 4. (a) The estimated projector input transfer function fp with a zoomed in portion to show the noise. (b) The estimated spatial
intensity variation due to projector, screen, and camera L with a zoomed in portion to show noise.

[12, 4, 18]. As a result, the camera approaches the ideal
pinhole model resulting in almost negligible spatial varia-
tion in C(x, y). Though this leads to more noise in the ac-
quired data, it is preferred over inaccuracies introduced by
the presence of the vignetting effect at wider aperture set-
tings [15, 18, 17].

We use this fact to separate C(x, y) from L(x, y). Let
us assume that the camera offers different aperture settings,
a1, a2, . . . an, where a1 is the most narrow aperture setting.
We first reconstruct L(x, y) at different aperture settings ak,
1 ≤ k ≤ n using the linear system of equations generated
by Equation 5, denoted by Lk(x, y). We assume that at a1

aperture setting the camera vignetting is negligible. Hence,
C(x, y) is close to 1 and L1(x, y) = P (x, y)S(x, y). At
wider aperture settings of ak, 2 ≤ k ≤ n, the vignetting
effect of the camera Ck(x, y) is then given by

Ck(x, y) =
Ck(x, y)P (x, y)S(x, y)

P (x, y)S(x, y)
=
Lk(x, y)
L1(x, y)

. (6)

Note that Ck(x, y) is the camera vignetting effect repre-
sented in the projector coordinate space. C ′k(u, v) is the
same function in the camera’s coordinate space and can be
easily found using the geometric warp G(x, y) = (u, v).
Figure 3 shows the estimated spatial variation or vignetting
effect at different apertures. As expected, an increase in
aperture size (i.e decrease in f-stop) leads to more pro-
nounced vignetting.

2.2. Performance

The system of linear equations achieved by Equation 5
is very large. Let Di and DZ each be the domain of hp

and hc respectively, P be the set of pixels in the projector’s
coordinate space, and T be the set of camera exposures.
This results in |P ||T ||Di| equations and |P |+ |Di|+ |DZ |
unknown variables for the system of equations defined by
Equation 5. Typically |Di| = |DZ | = 256 and |P | =
1024 × 768 = 786432 (assuming common XGA projec-
tor resolution). Since there are multiple exposures for each

(a) (b)

Figure 5. (a) The predicted image using the estimated parameters
in Equation 5. (b) The image captured by the camera.

input inDi, the size of the linear system is on the order of at
least a few million equations. Solving such a huge system
would make the method inefficient.

We address this inefficiency by first using a limited num-
ber of pixels in the projector space to solve for hp and hc.
To ensure a sufficiently over-determined system, the criteria
|P ||T ||Di| > |P |+ |Di|+ |DZ | should be satisfied. We use
a subset of the projector’s pixels and solve a linear system
of equations of much smaller size. For |Di| = |DZ | = 256
and |T | = 6, a choice of 100 for |P | is more than adequate.
We first subsample L to a resolution of 10× 10 pixels. We
use this to setup a smaller linear system of equations and
solve for hp and hc.

With the estimated hp and hc, we can substitute these
into Equation 5 and quickly back-solve for L(x, y) at the
various projector coordinates, by rewriting Equation 5 as

ln(L(x, y)) = hc(Z(i, j, x, y))− hp(i)− ln(tj) (7)

Ideally, any image that has an unsaturated Z at the spatial
location (x, y) can be used to find L(x, y). However, this
will yield a noisy L(x, y). To reduce this noise in L(x, y),
we can weigh values from multiple images, as detailed in
the next section.
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Figure 6. (a) The image captured by a camera when the projector displays a flat field. (b) The image captured by the camera when the
projector displays the image in (c). (c) The corrected input image sent to the projector to create a visually flat field.

2.3. Accuracy

Noise is an important issue when solving for any large
system of linear equations. The noise arises not only from
the devices (camera and projector) but also from the screen.
In particular, we use a rear projection screen with relatively
high gain which has been shown to generate considerable
noise[12]. If we do not take measures to address this, the
recovered parameters can be very noisy as shown in Figure
4. To achieve a cleaner result, as in Figure 2, we can con-
strain the solution of our linear system to reduce the noise
introduced in the estimated parameters.

To assure smooth hp and hc functions while solving the
system of equations, we want to minimize the error function

E =
X
j∈T

X
(x,y)∈P

X
i∈Di

[hc(Z)− hp(i)− ln(L(x, y))− ln(tj)]
2 (8)

+λ

0@ X
Z∈DZ

h′′c (Z)2 +
X
i∈Di

h′′p(i)2

1A . (9)

The first term assures that the solution arises from the set of
equations given by Equation 5 in a least-squares sense. The
second term is a smoothing constraint on the curvature of
hp and hc, given by their second derivative. In the discrete
domain, we use the Laplacian operator to find the curvature
of hp and hc. For example, h′′p(i) = hp(i − 1) − 2hp(i) +
hp(i + 1). The scale factor λ weighs the smoothness term
relative to the data fitting term and should be chosen based
on the amount of noise in Z.

Notice that the first term in Equation 9 gives equal
weights to all recorded camera values Z, and the second
term gives equal weights to all projector inputs i. However,
the images with lower energy are much more likely to be
affected by noise than signals with higher energy. In this
scenario, this means that noise is high for lower values of i
and Z. We want to weigh higher energy signals with greater
confidence. To achieve this, we modify the first and second

term of the error function in Equation 9 as

λ

( ∑
Z∈DZ

wc(Z)h′′c (Z)2 +
∑
i∈Di

wp(i)h′′p(i)2
)
. (10)

where wp and wc are the weighting functions correspond-
ing to the projector input and the recorded camera values
respectively. Since higher intensities have higher energy,
we give the higher intensities greater confidence by using
linear weighting functions, wc(Z) = Z and wp(i) = i.

Another source of noise is when L(x, y) is estimated us-
ing Equation 7. Once hc and hp are recovered from the
sub-sampled projector space, they are then used to solve
for L(x, y) in the original projector space. Note that the
value Z recorded from a spatial location (x, y) is differ-
ent in images captured at different exposures for different
projector inputs and can span the entire range of values in
DZ . Usually the image captured for input i at a particu-
lar exposure does not yield unsaturated outputs at all spatial
pixel location (x, y). So, we need to use different images
for reconstruction of L at different spatial locations. This
yields a noisy L(x, y) due to the presence of noise in both
the projected and the captured images. An obvious way
to reduce this noise is averaging. For each spatial location
(x, y), we can average the multiple L(x, y) values that we
find by back-solving all the different images with an unsat-
urated value at (x, y) and thus reduce the effect of noise.
Instead of averaging, we modify the averaging process by
weighing the estimated L(x, y) values according to a con-
fidence measure that will suppress the impact of noise by
assigning higher intensities greater confidence (since higher
energy signals have greater signal to noise ratio). We weight
L(x, y) by a function wL(Z, i) = wp(Z)wp(i). The noise
is most likely to affect images with low i and Z where
wL(Z, i) is very low. Thus, the brighter and less noisy im-
ages are emphasized more than the noisy ones by using wL.
The back-solving is now done by modifying Equation 7

ln(L(x, y)) =

P
j∈T

P
i∈Di

wL(Z, i)[hc(Z)− hp(i)− ln(tj)]P
j∈T

P
i∈Di

wL(Z, i)
,

(11)
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Figure 7. (a,c) An image captured at aperture f/2.8. Note the darker corners where the vignetting effect is most apparent. (b,d) The estimated
camera vignetting effect is used to correct images taken at aperture f/2.8. Note that the darkened corners are removed completely.

resulting in considerable noise reduction as illustrated in
Figure 2.

2.4. Implementation

To test our methodology, we used a Kodak DCS
ProSLR/n camera and a standard presentation projector, Ep-
son 74c. We projected 32 flat grayscale fields with intensity
levels uniformly sampled from 0 to 255. For each intensity
level, 15 exposures were taken. This process was repeated
for 5 different aperture settings: f/32, f/16, f/8, f/4 and f/2.8.
The data collection took 45 minutes per aperture. To reduce
the collection time, we tried reducing the number of expo-
sures. 8 seems to be the minimum number of exposures
needed before the effects of noise become visible. The ex-
posures used, however, need to be well distributed amongst
the range of available camera exposures. The program for
recovering the projector-camera parameters was written in
C++/Matlab and utilizes the OpenCV library. On a Pentium
4, 2.8 GHz PC, it takes 11-15 minutes to process and re-
cover the projector-camera parameters, i.e. the camera and
projector transfer functions, the camera vignetting effect at
different apertures, and the spatial intensity variation of the
projector and screen combined.

2.5. Verification

To verify the accuracy of the estimated parameters, we
performed two experiments. In the first experiment, we took
an arbitrary input image and applied the estimated param-
eters as per Equation 5 to generate a predicted image. We
compared this with an image captured by the camera. Fig-
ure 5 shows that the predicted image is indistinguishable
from the actual image captured by the camera thus verifying
the accuracy of the parameters recovered by our method.

In the second experiment, we used our results to display
a visually uniform gray field. Providing a flat gray input to
the projector results in an image captured by the camera that
appears to be non-uniform. This is due to the spatial inten-
sity variation of the camera, projector, and screen L(x, y).
Note that to achieve a uniform gray field, we have to com-
pensate for the variation in P (x, y)S(x, y) achieved after
separation of parameters (Section 2.1). If this separation is

not performed, presence of C(x, y) in L(x, y) would lead
to over-compression of the brightness near the center of the
projector which in turn will cause significant loss in the dy-
namic range. To achieve a uniform image on the camera we
divide the flat gray input image by min(P (x, y)S(x, y)).
We then project this result and capture it on camera. Since
P (x, y)S(x, y) is an accurate estimate, the captured result
appears flat as illustrated Figure 6.

3. Using Calibrated Projectors and Cameras

We have only addressed photometric calibration for
grayscale images. The analysis, however, extends directly
for photometrically calibrating each color channel on a per-
channel basis using already existing related work to de-
scribe how different color channels interact [18, 13]. We
omit the details here because of the lack of space.

Projector-camera systems are used in a plethora of ap-
plications today, including scene capture, 3D reconstruc-
tion, and automated calibration of multi-projector displays
[15, 17, 27]. In most of these applications, the camera is
almost always set to a narrow aperture to avoid vignetting
artifacts. This results in images having low signal to noise
ratio which adversely affects important algorithmic compo-
nents like feature matching or image blending. Increasing
the aperture size decreases noise but also affects the accu-
racy of results by adding vignetting artifacts. Our projector-
camera photometric calibration can be used to correct vi-
gnetting and thus, allow cameras to be used at wider aper-
tures in such applications.

Figure 7 shows the result of using the estimated spatial
intensity variation of the camera to correct for vignetting
effects in images captured at wide apertures. Since the vi-
gnetting effect assumes a linear relationship between the in-
put light and the captured camera values, the captured im-
age is first linearized using the inverse of the estimated cam-
era input transfer function. The reciprocal of the estimated
vignetting effect is then multiplied with the linearized im-
age to generate the corrected image in linear space. Finally,
the input transfer function of the camera is applied to the
corrected image to bring it back to the non-linear space.

As an example, we demonstrate using our method
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Figure 8. (a,c) Panorama generated from images taken at aperture f/2.8 without vignetting correction. Notice that there are dark vertical
bands for the overcompensated blending regions. (b,d) The estimated camera vignetting effect is used to correct the images before they are
stitched into a panorama. These contain no perceivable seams.

(a) (b)

Figure 9. (a,b) Zoomed in portion of the panorama in Figure 8(c)
and (d) respectively. Due to poor feature detection, there is a mis-
match in geometric matching in Figure 8(c). This is resolved when
our method is used to generate Figure 8(d).

to improve feature matching and image blending in 2D
panoramic image generation applications. We compare the
panoramas generated from the same set of images in two
ways. In the first approach, which is commonly adopted, the
photometric parameters of the camera are unknown. The set
of images taken by the camera are stitched together and then
blended in the regions where adjacent images overlap. In
the second approach, we first calibrate the camera using our
self-calibration method. Thus, the photometric parameters
of the camera are known. Then, the same set of images cap-
tured for the panorama is first linearized using the camera’s
inverse transfer function. They are then stitched together
with overlap blending and finally brought back to the non-
linear space by applying the inverse transfer function.

We find that the latter method provides better feature
matching, enabling a better geometric match across im-
ages. Vignetting affects the fringes of each image which
forms a big part of the overlap region with the adjacent im-
age. Lower intensity in this region affects the quality of
feature matching adversely. Further, the former panorama
shows dark bands in the blending region which are elimi-
nated completely in the latter one. This is because blending
assumes linear input transfer function, which is not true in
the former method, leading to over-compensation in the al-
ready darkened overlap regions. The latter method, on the
other hand, performs the blending in a linear space elimi-

nating the dark bands. Figure 8 and 9 illustrate the results.

Our projector-camera self-calibration method enables
photometric calibration of multi-projector displays using
an uncalibrated camera. Existing photometric calibration
methods [13, 20, 11, 12] require a photometrically cali-
brated camera. Using our method, each projector can be
independently calibrated using the same uncalibrated cam-
era. The recovered projector parameters can then be used
to photometrically calibrate the display using existing tech-
niques that modify the parameters appropriately to achieve
a seamless display [13].

4. Conclusion

In this paper, we have presented a method for complete
photometric calibration of a projector-camera system. In
addition to contributing to the state of the art in device cal-
ibration, our method enables the use of photometrically un-
calibrated projectors/cameras in various applications rang-
ing from multi-projector displays to 2D/3D scene capture.

This work has several future extensions. The described
method in this paper estimates the photometric parameters
at a fixed zoom setting. Vignetting effects change signif-
icantly with zoom settings. We would like to extend our
work to capture these changes and find a model that will al-
low efficient storage and access of these parameters across
such changes. A full color self-calibration of the projector-
camera pair is another extension to consider. The com-
monly available white balance control on the projectors and
cameras can have a significant role to play in this. One
can imagine a closed-loop calibration technique that not
only changes the exposure setting of the camera but also
its white balance to instrument observations with changes
in color parameters. This information can then be analyzed
to achieve a full color calibration of the camera.
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