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Figure 1: Projection display results of two images(’sunflower’ and ’plant’) on a color textured surface using our radiometric compensation
method that requires capture of only two images to generate a more accurate compensated image as opposed to capturing tens or hundreds
of images required for any existing method. From left to right: The two desired original images and the color textured surface (1st column);
the display results without radiometric compensation (2nd column); Our input projector images computed using our radiometric compen-
sation method (3rd column); The projections display results with our radiometric compensation (4th column); the two images used in our
radiometric compensation method (5th column).

Abstract
Radiometric compensation methods remove the effect of the underlying spatially varying surface reflectance of the texture when
projecting on textured surfaces. All prior work sample the surface reflectance dependent radiometric transfer function from the
projector to the camera at every pixel that requires the camera to observe tens or hundreds of images projected by the projector.
In this paper, we cast the radiometric compensation problem as a sampling and reconstruction of multi-dimensional radiometric
transfer function that models the color transfer function from the projector to an observing camera and the surface reflectance in
a unified manner. Such a multi-dimensional representation makes no assumption about linearity of the projector to camera color
transfer function and can therefore handle projectors with non-linear color transfer functions (e.g. DLP, LCOS, LED-based or
laser-based). We show that with a well-curated sampling of this multi-dimensional function, achieved by exploiting the following
key properties, is adequate for its accurate representation: (a) the spectral reflectance of most real-world materials are smooth
and can be well-represented using a lower-dimension function; (b) the reflectance properties of the underlying texture have
strong redundancies – for example, multiple pixels or even regions can have similar surface reflectance; (c) the color transfer
function from the projector to camera have strong input coherence. The proposed sampling allows us to reduce the number of
projected images that needs to be observed by a camera by up to two orders of magnitude, the minimum being only two. We
then present a new multi-dimensional scattered data interpolation technique to reconstruct the radiometric transfer function at
a high spatial density (i.e. at every pixel) to compute the compensation image. We show that the accuracy of our interpolation
technique is higher than any existing methods.
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1. Introduction

Projectors today are being used in many applications including en-
tertainment, visualization, gaming and cultural heritage. A large
number of techniques in the past two decades have focused on
easy deployment of projectors by lay-users by using a camera that
analyzes the projection surface to create undistorted high-quality
projected image. This work falls in the category of camera-based
radiometric compensation techniques that deal with projection on
a textured surface (e.g. a wall paper, a poster, a brick wall). Such
techniques modify the input image to the projector in such a manner
that the effect of an underlying textured surface is removed from the
projection. The modified input image thus generated is called the
compensated image.

Radiometric compensation methods depend on accurate model-
ing of the radiometric transfer function that comprises of the color
transfer function from the projector to the camera and the spatially
varying reflectance function of the textured projection surface. Pri-
or work in this direction differ in the use of pre-calibrated devices
or not, considering the color transfer function and the surface re-
flectance function in combination or in isolation, and using a sim-
ple evaluation or an intricate quality-maximizing optimization of
the radiometric transfer function when generating the compensated
image [NPGB03, YHS03, GFN05, GB08, GI15, CYXL08, PYL07,
AYL∗12, AOSS06, WB07, BIWG08]. However, in all prior work-
s, every pixel of the projector is handled independently which is
equivalent to sampling the radiometric transfer function at a very
high spatial density. In this case, tens of images are required to
sample this function when using linear projectors using three inde-
pendent primaries. But, the number of images quickly increases to
hundreds or even thousands when using projectors with non-linear
color transfer functions as is common in non-LCD based projec-
tion technologies (e.g. DLP, laser, LCOS) due to the use of more
than three primaries, or significant channel dependency, or non-
monotonic or non-linear channel transfer functions [KYS∗15].

Here we propose, to the best of our knowledge, the first work
that casts the problem of radiometric compensation as a problem
of sampling and reconstruction of a multi-dimensional radiometric
transfer function, T , whose domain consist of the 3D desired color
as seen by the camera and the m-dimensional reflectance of the sur-
face where m is the spectral resolution of the reflectance function.
Therefore, T is a multi-dimensional function that maps m+3 input
parameters to 3 output parameters. Usually, m = 30.

Projection on textured surfaces usually exhibit the following key
properties: (a) the spectral reflectance of most real-world materials
are smooth and can be well-represented using a lower-dimension
function; (b) the reflectance properties of the underlying texture
have strong redundancies – for example, multiple pixels or even
regions can have similar surface reflectance; (c) the color transfer
function from the projector to camera have strong input coherence.
These redundancies are exploited to reduce the dimensionality of
the domain of T from m+ 3 to 3m′+ 3 where 3m′ << m. Since
current devices provide three channels each, we use 3m′ consider-
ing m′ images from such devices.

Further, the aforementioned redundancies lead to joint clustering
of the domains of color transfer function and surface reflectance
functions that can be leveraged to accurately reconstruct T from a

well-curated set of samples that can be achieved by capturing very
few, m′+ 1, sampling images (m′ for reflectance images and one
for response images), even when capturing as small as only two
images (for m′ = 1 as shown in Figure 1). Therefore, the number
of images required to achieve radiometric compensation reduces
by one or two orders of magnitude when compared to any exist-
ing methods . However, our sampling pattern images are optimized
that enable appropriate sampling for accurate reconstruction. We
present a technique to generate these optimized patterns.

Finally, we present a multi-dimensional scattered data interpo-
lation technique to reconstruct the radiometric transfer function at
a high spatial density (i.e. every pixel) to compute the compensa-
tion image. Interestingly, a local linear regression based interpo-
lation technique provides an efficient and accurate way to achieve
the compensation image, in particular for highly saturated textured
regions where the color transfer function undergo severe distortion.

1.1. Main Contributions

To the best of our knowledge, we present the first work that avoids
explicit sampling and capture of the surface reflectance dependen-
t radiometric transfer function at every pixel, by treating the ra-
diometric compensation problem as a multi-dimensional data sam-
pling and reconstruction problem that leverages redundancies in the
higher-dimensional data of reflectances and color transfer function-
s. Using this key insight our method aims at clustering the radio-
metric transfer function based on the joint similarity of the color
transfer function and the reflectance properties of the surface. In
addition, this representation makes no assumption about linearity
of the projector or camera color transfer function and can there-
fore handle projectors with non-linear color transfer functions (e.g.
DLP, LCOS, LED-based or laser-based). Reducing the number of
images to be captured by two orders of magnitude increases the
sampling efficiency dramatically providing an unforseen simplic-
ity in deployment. Exploring interpolation techniques well-suited
to the characteristics of the multi-dimensional radiometric trans-
fer function-T improves compensation accuracy despite the sparse
sampling.

2. Previous Works

Linear device transfer functions are manifested as 3D color gamuts
that are rectangular parallelepiped in shape where the function re-
lating the 3D projector color input to the 3D desired color seen by
the camera can be modeled as a 3× 3 matrix. However, this mod-
el does allow for the per-channel 1D input transfer functions (ITF),
commonly referred to as gamma functions, to be non-linear, though
they need to be monotonic. Earlier works on radiometric compen-
sation in projector camera systems focused on non-textured pro-
jection surface on which multiple overlapping projectors project
images. In such cases, color variation across the display created
visible color blotches and seams that was addressed using content-
independent methods (i.e. methods where the correction of colors
does not depend on the projected content) assuming linear projector
color transfer functions [MHTW00,MS04,MS05]. Non-linear ITFs
had to be linearized apriori before applying any of these methods.
Since the focus of our work is compensation of single projectors on
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textured surfaces, we omit a detailed discussion of these methods,
as are available in [BMY05, MB07].

[NPGB03] addressed the problem of radiometric compensation
for single projectors projecting on textured surfaces for the first
time, assuming a calibrated camera whose per channel 1D ITF had
to be linearized apriori and a linear projector to camera color trans-
fer function. [NPGB03] showed that the combined effect of the col-
or transfer and the surface reflectance function at any pixel of a par-
ticular input image can be modeled by a 3×3 color mixing matrix.
Since this matrix depends on the texture at any pixel, it varied from
pixel to pixel resulting in a spatially varying color mixing matrix.
Radiometric compensation entailed recovering this matrix at every
projector pixel and inverting it to generate the compensated input
image that would remove the effect of the textured surface from
the projected image. Extension of this method was used to accoun-
t for ambient lighting [YHS03], dynamic environments [GFN05],
and complex illumination effects like caustics, scattering and re-
fraction [WB07]. [CYXL08] showed that the color mixing function
in [NPGB03] can be separated into a spatially varying surface re-
flectance function and a spatially constant color transfer function.
A detailed survey of such methods is available in [BIWG08]. How-
ever, all these methods to computing the radiometric function also
focused on simply evaluating the radiometric function at differen-
t values to generate the compensation image without considering
optimizing the quality of the display created by the compensated
content projected on the textured surface.

Next, we witnessed the advent of adaptive methods that in ad-
dition focused on maximizing the display quality when generating
the compensation image. [WSOS05] used a perceptual metric to
minimize visible artifacts; [AOSS06, GB08] further improved the
display quality by considering the content of the displayed images
and preserving its brightness and contrast maximally. More recent-
ly, [TIK15] presented a new adaptive method to handle radiomet-
ric compensation in distributive cooperative systems. Finally, such
adaptive methods have also been proposed for multiple superim-
posed projectors on colored non-planar surfaces [AYL∗12], that are
textured with low frequency textures.

However, all these aforementioned methods use pre-calibrated
devices, and assumed linear projectors with independent channel
primaries, and monotonic 1D ITFs. [SLM10] shows the inadequa-
cy of this model for most of non-LCD panel based projection tech-
nology. In such projectors the color transfer function can no longer
be modeled as a linear matrix due to strong channel dependencies
and may even be a function whose domain is a multiple-channel
input instead of a 3D input due to the presence of more than three
primaries. Further, the 1D per-channel ITF can exhibit severe non-
monoticities and non-linearities. When projecting on textured sur-
faces, these 3D color gamuts show complex distortions (e.g. strong
concavities) whose severity increases with the increase in the satu-
ration of the underlying texture color (Figure 2).

In order to handle color transfer among projection displays of
different technologies, [SLM10] modeled the color transfer func-
tion of such non-linear projectors by densely sampling the color
transfer function and fitting a higher dimensional Bézier surface to
model it. [SLM10] uses this more complex color transfer function
model to handle color transfer across multiple displays on a white

surface and hence does not sample the color transfer function at a
high spatial resolution as is required for a textured surface. Howev-
er, we can use the same model at every pixel of the textured surface
to model the combined non-linear color transfer and surface re-
flectance at every pixel (Figure 4). However, a Bézier surface does
not pass through the sampled points though it is smooth. Further-
more, the method is time-consuming because it requires as many as
n3 sampling images to provide an adequately accurate Bézier sur-
face representation, where n is the number of samples per channel.
Usually n = 9 thereby requiring more than 700 images to apply
this technique. [GI15] instead uses a thin plate splines (TPS) ra-
dial basis function (RBF) to model the combined non-linear color
transfer and the surface reflectance at every pixel. Using a sparse
sampling of n = 4 also results in close to 100 sample images. Fi-
nally, when reconstructing the function for unsampled input colors,
existing smooth color interpolation techniques using only hundreds
of control points result in poor function reconstruction that cannot
compensate for severe distortions in the shape of the color gamut
thereby degrading the quality of results on textures with saturated
colors. However, note that like all other prior works, [GI15] also
needs reconstructing the color transfer function at every pixel.

color transfer function on
untextured white

Figure 2: Visualization of color gamuts(in RGB color space) of a
real DLP projector display on different patches of a standard col-
or checker. Note that the color gamut of DLP projectors on higher
saturated color patches are more concave. (please zoom in for de-
tails). Note that the higher distortion in the gamut at more saturated
colors when compared to that on an untextured white (bottom left)

3. Problem Formulation

Our system comprises of a single projector projecting on a tex-
tured surface being observed by a single camera. All devices and
the surface are assumed to be static over time. We assume struc-
tured light based geometric registration technique has been used
to recover the correspondences between the projector and camera
pixels. Many options are available to achieve this projector-camera
registration [BMY05].

Let us consider a projector input pr,g,b = (pr, pg, pb) where
0 ≤ pr, pg, pb ≤ 1. Let the camera captured value for reflectance
r(λ) be (xr,xg,xb). Then we can express the radiometric transfer
function from the projector to the camera via the surface reflectance
r as

xi =
∫ 700nm

400nm
ci(λ)r(λ) l(pr,g,b,λ)dλ i ∈ {r,g,b}. (1)
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where [400nm,700nm] is the visible wavelength range, ci(λ) de-
notes the spectral sensitivity function of channel i of the camera,
l(pr,g,b,λ) is the spectral power distribution function for pr,g,b in
projected image, r(λ) represents a spectral reflectance function.

Assuming a spectral resolution of m, Eq.1 can be written into the
matrix form as

x = CR l(p) (2)

where x is a 3×1 vector of camera response, C is a 3×m matrix of
spectral sensitivity of camera, p is a 3×1 vector of the input values
at pixel p, l(p) is a m×1 vector of spectrum of the projected light
for input (pr, pg, pb), and R is a m×m diagonal matrix of spectral
reflectance. Let ri be the sole non-zero element of ith row of R.
From Eq.2, we have

p = l−1
(

R−1 C−1 x
)
. (3)

Since R is an m×m diagonal matrix, R−1 is also an m×m diagonal
matrix whose non-zero element in ith row is given by 1

ri
. C−1 is a

m× 3 pseudo-inverse of C with elements αi j , 1 ≤ i ≤ m and 1 ≤
j ≤ 3. Therefore, Eq. 3 can be written as

p = l−1

(
∑

3
j=1 α1 jx j

r1
, ...,

∑
3
j=1 αi jx j

ri
, ...,

∑
3
j=1 αm jx j

rm

)
, (4)

where αi j denotes the coefficient of x j
ri

and depends only on cam-
era sensitivities C. In a static system C and l() does not change
with time. Therefore, as per Eq. 4, p at a spatial location (u,v)
can be represented as a function that depends on m + 3 param-
eters – (x1,x2,x3,r1, ...rm). We represent the mapping from high
(m+ 3) dimensional data (x,r) to three-dimensional data p with a
non-linear transformation function T given by

p = T (x,r) . (5)

Eq. 5 summarizes the radiometric compensation pipeline where T
provides the compensated image value p (input to the projector),
with m-dimensional reflectance r, to generate the desired camera
observed value x. Therefore, T is a m+3 to 3 dimension mapping
when considering standard three-channel cameras. Usually m = 30
making this a function T : Rm+3 → R3, i.e. T : R33 → R3. Note
that we avoid pixel locations completely in this formulation.

3.1. Reflectance Acquisition via Dimension Reduction

It is impossible to recover r without any prior knowledge of the
illumination and imaging system or any known targets [SX07].
Fortunately, many prior works have shown that spectral reflectance
of most real-world materials can be well represented by low dimen-
sional data (usually 3 - 9) [PHJ89] (e.g. spectral reflectances can
be reconstructed using nine dimensional color mixing matrix [L-
LZ13, HSOS14]).

Let us consider capturing m′ images when all pixels of the pro-
jector is projecting the same inputs(e.g. projecting a single all-gray
image, m′ = 1 and p = [0.5;0.5;0.5]). Therefore, the projector in
this case is being used as a colored illuminant, and the m′ different
images are captured with m′ different spatially constant input from
the projector. The vector of 3m′ (each captured image has three
channels) color values of each pixel is denoted as y. The vector y

Reflectance  Acquisition

Response  Acquisition

Single Color Images

Textured 
Surface

Textured 
Surface

Sampling   Optimization

Pattern Images
P

Captured Y

Captured X

Desired Image

Sampling Set    
S’

Compensated Image

Figure 3: The flow chart of creating the sampling set, sampling
optimization, and radiometric compensation.

is a projection of r such that local structure of y preserves the local
structure of r. With the same spatially constant input, similar ri will
result in similar yi, as long as the color transfer function from the
projector to camera is spatially smooth, which has been shown to
be true in [MS04, SLM10]. This similarity in camera response will
be more coherent with the underlying similarity in reflectance if the
illumination has a broad spectral band (e.g. gray or white). There-
fore, we assume that r can be represented by a lower dimensional
vector y of dimension 3m′. Replacing r with y in Eq. 5 we get a
function T ′ : R3m′+3→ R3 as follows

p = T ′(x,y) (6)

The locally linear embedding method in [RS00] shows that with
adequate sampling each data point in the high dimensional data
(x,y) and its neighbors are expected to lie on or close to a smooth
locally linear low dimensional model. Further, the corresponding
low dimensional data points p also approximately satisfy the linear
model. Therefore, with a sampling set

S = {((xi,yi),pi),(xi,yi) ∈ R3m′+3,pi ∈ R3, i = 1 . . .K}. (7)

where K is the number of sampling points, the input value p can
be estimated via locally linear embedding to generate the desired
color p if the reflectance y is known. We scale y and x so that their
maximum values are 1.

For three primary projectors, m′ > 3 brings in dependencies due
to the similarity of the spectral distribution function of the projec-
tors and cameras. However, our experiments (detailed in Section
4) show that we get better results than existing methods even for
m′ = 1 using an all-gray projector image.

3.2. Optimized Sampling of Color Transfer Function

Our next goal is to create a projector image where each cluster of
reflectance is populated with a set of optimized projector input val-
ues so that we get an adequate sampling of the function T ′. The
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local linearity assumption is built upon uniform sampling. There-
fore, we use k-means clustering these 3m′ dimensional reflectances
to cluster similar reflectances, as shown in Figure 4, and then uni-
formly distribute optimized projector inputs in each cluster of the
reflectance image. This results in the creation of an optimized in-
put pattern for the projector, the only image in addition to the m′

images to be projected by the projector and then captured by the
camera to reconstruct T ′.

To ensure uniform sampling of the space (p,y), it is important
to assign each cluster, input values p that are as diverse as possible.
Towards this end we use a low discrepancy Poisson-disk sampling
algorithm [EMP∗12] to generate the input values as shown in Fig-
ure 4(c)). With the blue noise properties, Poisson-disk sampling
generates samples which are no closer to each other than a spec-
ified minimum distance, resulting in uniform sampling and high
coverage in color space. Finally, we randomly assign the generat-
ed inputs to the positions of sampling points in each cluster(Figure
4(d)). Note that the actual number of inputs used depend on the
size of the clusters and therefore larger clusters get populated with
larger number of inputs. If the cluster sizes are small, it is possi-
ble that we cannot distribute all the samples for that cluster in a
single pattern image. Assume that it requires d pattern images to
accommodate all different p samples within each cluster. So the
total number of required sampling images is m′ + d, and if each
image has N sampling points, the size K of the final sampling set
S′ is d×N. The complete algorithm of generating this optimized
pattern is provided in Algorithm 1. The corresponding image cap-
tured by the camera provides the sampling of the function T ′ as
described in Eq. 7.

Algorithm 1 Sampling Patterns Generation
Input: A set of N pixels with reflectances: {y j}( j = 1, ...,N).
Output: d sampling pattern images, each containing N pixels with input
colors {pi j}( j = 1, ...,N, i = 1, ...,d).
Init the sampling pattern images to be black images;
Clustering using k-means: Partition the N pixels into t clusters Ck (k =
1, ..., t);
for each cluster Ck do

num = sizeof(Ck);
Poisson-disk sampling: Generate num×d colors in [0,255]3;
Randomly distribute the generated num×d colors into the region be-
long to cluster Ck in d sampling pattern images.

end for
return d sampling pattern images;

3.3. Compensation Image Generation

In order to generate the compensation image - the modified image
that needs to be projected by the projector to compensate for the
texture on the surface so that the desired image is seen, we have
to find the appropriate projector input p j at any pixel location j,
in order to get the desired camera response x j and the reflectance
vector y j . Let z j = (x j,y j). Following is the reconstruction method
we use from the samples S to generate this appropriate projector
input p j.

We first select the K̃ (K̃�K) nearest neighbors to z j in S, based
on Euclidean distance. Let the set of these K̃ neighbors be denoted

K-means

Poisson-disk Sampling

Acquired Reflectance

Patterns Generation

Randomly 
Distribute

Determine 
Region

(a) (b)

(c) (d)

Figure 4: (a) Acquired reflectance images (m′ = 4) of a color tex-
tured surface. (b)Visualization of k-means results of the acquired
reflectance. All pixels are classified into eleven clusters. Note the
cluster of interest is highlighted. (c) Poisson-disk sampling with a
certain number. (d) Randomly distribute the generated color sam-
ples in the cluster region of interest to create a part of the sampling
patterns (d = 1).

by N j. Assuming both z j and p j to be approximated via the same
linear combination of their neighbors, we find

z j = ∑
l∈N j

wlzl ⇒ p j ≈ ∑
l∈N j

wlpl . (8)

where wl denotes the weight of neighbor nl ∈ N j in the locally
linear approximation. In order to learn the weights {wl}, we solve
the regularized linear regression problem below.

argminw

∣∣∣∣∣∣∣∣z j− ∑
l∈N j

wlzl

∣∣∣∣∣∣∣∣2 +α||w||2. (9)

where the regularization parameter α is used to prevent overfitting.

Let Z̃ be the matrix consisting of {zl} ( j ∈N j)), the problem in
Eq.9 can be solved by w = (Z̃T Z̃+λI)−1Z̃T zi, the input values pi
can be computed:

p j = P̃w = P̃(Z̃T Z̃+λI)−1Z̃T z j (10)

where P̃ is the matrix of input values {pl} (nl ∈N j), Z̃ is a (3m′+
3)× K̃ matrix and I is a K̃ identity matrix.

Although nonlinear interpolation methods(e.g. radial basis func-
tion, Kriging) can be applied when using our multidimensional
model, and they may provide more accurate results, our choice
of local linear regression is primarily motivated by its efficien-
cy [CFL∗15]. This use of local linear regression entails finding K̃
nearest neighbors and a matrix inversion resulting in a computa-
tion complexity ofO(K̃3 + K̃K) that is superior to the computation
complexity of nonlinear interpolation methods (e.g. [Ska12]) given
byO(K̃6+ K̃K). We also observe that linear reconstruction already
can achieve acceptable results using sparse samples, therefore, this
linear interpolation is a much more efficient method for accurate
spectral reconstruction.
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It is important to note that the larger the number of samples in
S used in the interpolation, better is the accuracy of reconstruc-
tion. But this comes at the cost of an increased computation time
and memory usage. Therefore, in order to make the interpolation
method even more efficient, we need to limit the number of sam-
ples used in the interpolation without compromising the color accu-
racy. In order to achieve this we apply a greedy sample elimination
approach [Yuk15] to pick a uniformly distributed sample subset.
The subsampling approach constrain the size of sampling set K̃ and
hence limit the computation cost.

However, note that the calculated projector input p j may fall out-
side the valid input range ([0,255] for 8-bit systems) of projectors,
and hence out-of-gamut color clipping may occur. Gamut mapping
that globally compress the brightness and chroma of desired images
can reduce out-of-gamut color errors though at the cost of compro-
mised contrast. We apply a simple gamut mapping where the com-
pensated image I generated after the interpolation is simply scaled
to by a factor µ to create I∗, as given by

I∗j = µ I j . (11)

The scale factor µ is defined as the minimum value of {µc}, where
µc is calculated for each channel c as

µc = min(
|y j|
(I j)c

)×max(
(xi)c

|yi|
) (c ∈ {r,g,b}, i = 1 . . .K),

(12)
where j denotes the location of pixels in the image, i denotes the
index of samples in the sampling set S, | · | denotes the norm of a
vector.

4. Experiments and Results

We have experimented with the proposed method both in simula-
tion and in a real set up to evaluate its performance. We present the
results in this section.

4.1. Simulation

We first evaluated the performance of the proposed sam-
pling technique using a simulation of multidimension-
al method on textured display surfaces with differen-
t spectral reflectances. We first projected various numbers
(K = 250,1000,4000,15000,30000,60000) of uniformly sampled
colors onto 200 different Munsell chips whose spectral reflectance
data can be found in [Uni02]), computed the corresponding
response values of an sRGB camera, and then compute the re-
flectance values under an all-white illumination of a projector. This
provides us with a sampling set with a large number of input colors,
reflectance values and responses. The spectral power distribution
of projector primaries used in the simulation are measured from
a real DLP projector by a ColorMunki Photo device and Argyll
software tools. The spectral sensitivity function of the camera we
used are from the Canon 5DMarkII’s data in the dataset [JLGS13].

Next, we simulated the capturing of the reflectance values of the
1000 other Munsell chips lit by the all-white illuminant. Then we
reproduced 10,000 arbitrary random input values to the projector

for these 1000 Munsell chips via proposed the locally linear re-
gression using the pre-built sampling set, and finally calculated the
average color error ∆E =

√
(∆r)2 +(∆g)2 +(∆b)2 (r,g,b ∈ [0,1])

between ground truth and reproduced results. We also conduct-
ed experiments for exploring the behavior of the number of used
neighbors K̃ in the local linear regression. Following are the results
of our simulation.
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Figure 5: (a) The average color errors of the simulation using var-
ious numbers of uniform sampling points with various numbers of
neighbors used in local linear regression. (b) The average color
errors via random sampling and uniform sampling with different
number of sampling points.

Number of Samples Figure 5(a) shows the average ∆E error
for different values of K̃, the number of neighbors used during in-
terpolation. Multiple such plots (shown using different colors) are
generated for different values of K, the total number of samples in
S. With various numbers of sampling points are plotted against the
different number of neighbors. First, we note that the error reduces
as K̃ increases. However, for K̃ > 20, the errors almost flatten out
indicating the optimal value of K̃. Second, the error decreases as
the K increases. More importantly, for K = 15,000, even with as
few as 20 neighboring samples the error is less than 0.05 which is
close to the human perception threshold, and therefore will go un-
noticed. However, our sampling should avoid the crosstalk across
pixels that often happens from color bleeding due to the imper-
fect point spread function of the projector. Assigning similar sam-
ples for neighboring grid positions can effectively reduce the errors
caused by color bleeding and allow dense sampling. However, this
does not allow us to globally optimize tens of thousands of input
values of sampling points . In order to balance these two require-
ments, we sparsely place one sample per 6×6 pixel block in the op-
timized pattern to avoid color bleeding from one sample to another.
Therefore, even for a single image of an inexpensive projector of
resolution 1024× 768, we can get K = 20,760 samples. Though
this is a relatively sparser sampling of T ′ when compared to earlier
works, this is much more than what we required to achieve accurate
compensation images.

Distribution of Samples Since the proposed uniform sampling
method is content-independent, we compared it with random sam-
pling for benchmarking. Results in Figure 5(b) show that the errors
of proposed uniform sampling method is nearly 30 percent less than
the that of random method. This motivates our choice of uniform
sampling in the proposed method.

Number of Clusters Intuitively, the optimal number of clus-
ters should be dependent on the specific texture used. Using too
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few clusters does not allow small clusters to be uniformly sampled
while using too many clusters reduces the sampling to a random
sampling.
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Figure 6: The average color errors of the simulation using various
numbers of distinct spectral reflectances with various numbers of
clusters used in our method. Note that the optimal numbers of clus-
ters for the simulation using 10, 20, 80 distinct spectral reflectances
are around 5, 9, 17 respectively.

We explore the relationship between the spectral diversity of the
underlying texture and the optimal number of clusters by construct-
ing the sampling sets using the chips with various number of dis-
tinct spectral reflectances selected from 1200 Munsell chips, and
then reproducing arbitrary random input values to the projector for
the remaining Munsell chips. Figure 6 shows the average ∆E error
for different number of distinct spectral reflectances used and the
number of clusters. We observe that the optimal number of clusters
depends heavily on the spectral diversity of the underlying texture,
i.e. higher the spectral diversity of the texture, greater the optimal
number of clusters. We also note that the plot of using 80 distinct
spectral reflectances is nearly flat, which implies that as the num-
ber the increasing number of distinct spectral reflectance increases,
the difference between the spectral reflectances gets smaller and
the clustering becomes ineffective. In this paper, our method us-
es the fixed empirical number of clusters (t=10), and yields result
compatible with earlier methods in most textures.

4.2. Real Systems

We evaluate the performance of the proposed method by project-
ing a variety of images on textured display surfaces. The projec-
tion displays were built with two off-the-shelf projectors (DLP &
LCD), two off-the-shelf camera (DSLR & GigE), and two flat col-
or textured surface as shown in Figure 7. 20 color images were
selected as the test images in our experiments. We downsampled
camera images to the resolution of projector images and used struc-
tured light techniques to find the projector-camera pixel correspon-
dences [RBY∗99].

For each test image, we captured the projected image with or
without radiometric compensation. The quality of the results was
evaluated via the comparison of original desired image and the
captured image. We experimented with different numbers of pat-
tern images for sample data points, each pattern image contains
133×100 (K = 13,300) sampling points, the number of neighbors

K̃ was set to 15, the regularization parameter α was set to 0.05, the
input values of the projected images were discretized and mapped
into [0,255]. The linear regression and k-nearest neighbor algorith-
m [GDNB10] in the radiometric compensation method were imple-
mented in real-time on the GPU using CUDA. We achieved a frame
rate of about 18fps on a 3.6GHz Intel Core i7 workstation with a
NVIDIA GeForce GTX1060 GPU for a 800×600 image.

camera

projector

display surface

(a)

(b) (c)

(d) (e)

Figure 7: (a)Experimental setup. (b)-(e): Four color textured
screens used: "paint", "wall", "fabric", "wood".

We show the result of our method using a 3-chip HITACHI HCP-
500X LCD projector with a resolution of 800× 600 and a Basler
pilot piA2400-17gc camera with a resolution of 2454× 2056, and
two textured surfaces - "fabric" and "wood" (7(d-e)). The result-
s of compensated display shown in Figure 8 are close to the de-
sired image. Although some corrected displayed colors in the areas
where the pattern of surfaces is extremely saturated are still not
close to the desired images, the result can be further improved with
by content-dependent quality optimization.

4.3. Comparison with Previous Works

We compared the proposed method with two state-of-the-art ra-
diometric compensation methods: the global Bézier interpola-
tion method [SLM10] and the global TPS RBF interpolation
method [GI15]. The projector-camera system used is constructed
with a Canon 750D camera with a resolution of 6000× 4000 pix-
els and a six-primary Benq MP615P DLP projector with resolution
of 800× 600. For this evaluation we used two textured surfaces -
"paint" and "wall" (7(b-c)). 53 = 125 sampling images were used
in the two previous methods, while only two sampling images were
used in the our proposed method. The desired images, compensat-
ed and uncompensated displays are shown in Figure 9. The textures
on the underlying display surfaces are clearly visible in the results
without radiometric compensation, while the results with radiomet-
ric compensation makes the texture imperceptible to varying de-
grees. Perceptually, our method outperforms the other two method
significantly (please zoom in for details).

This is further confirmed from the comparison of the reduction
of the color deviation from the desired image in Table 1. In order
to quantitatively evaluate the color accuracy of the three methods,
the mean and maximum color error4E of each method on 20 test
images are computed. Note that in this context maximum error is
important since that creates a visible artifact. Here we employ two
color error metrics: the norm of color difference in RGB color s-
pace and in perpetually uniform CIELAB color space. A varying
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Figure 8: From top to bottom: Original desired images, uncompensated projection results, compensated input projector images, and com-
pensated projector display. The left two columns show the results on the "fabric" texture and the right two columns show the results on the
"wood" texture.

Table 1: Color errors of the three methods with different numbers of sampling images

Our method Bézier Interpolation [SLM10] TPS RBF Interpolation [GI15]
N mean max mean max mean max

4Ergb

3 0.116 0.396 0.332 0.590 0.293 0.511
8 0.089 0.354 0.194 0.471 0.175 0.470
27 0.076 0.321 0.135 0.379 0.112 0.425

4ELAB

3 10.73 76.39 71.57 137.2 63.25 162.3
8 7.025 73.34 38.29 103.7 36.27 110.3
27 5.210 71.84 12.83 75.88 9.692 88.18

number(3, 8 and 27) of sampling images are used to illustrate how
color accuracy changes. Note that both the color error 4Ergb and
4ELAB decrease as the number of sampling images increases in
the two prior methods, while our method shows superior results to
previous methods irrespective of error metric we use even with far
fewer sampling images. In fact, note that in order to provide com-
parable quality achieved by 3 images using the proposed method,

the previous methods have to use one or two orders of magnitude
higher number of sampling images.

Note that although our compensated results are all acceptable,
our method performs better on the "wall" texture than on the "paint"
texture. This is expected that the "paint" surface consist of much
larger variety of reflectances than the wall and the multidimensional
samples are therefore more sparse than on the "wall" surface. This
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Figure 9: Comparison between original desired images (1st row), uncompensated projection results (2nd row), compensated projection
result by Bézier interpolation using 125 sampling images (3rd row), TPS RBF interpolation using 125 sampling images (4th row), and the
proposed method using only two (one for reflectance, one for response) sampling images (5th row). The left two columns show the results on
the "paint" texture and the right two columns show the results on the "wall" texture.

confirms that the accuracy of our method is dependent on sampling-
density.

Finally, in terms of performance, since previous per-pixel meth-
ods become a special case of our method where each sampling
point has no neighbors - our method will always outperform any
such methods by additionally taking advantage of spatial redun-
dancies.

4.4. Limitation

As is the case for any method that depends on sampling and recon-
struction, the performance of our method is also dependent on the
density of sampling S. To explore how our method performs with
varying number of samples, we show an example using 3000, 6000,
and 12000 samples in Figure.10(c-e). Note that the results with
higher K result in a higher overall brightness. This is because, al-
though the response functions of projectors(whether LCD or DLP)
are nearly monotonically increasing, they are often non-linear as
shown in Figure. 10 (b). In the presence of the non-linearity, the
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interpolated input values is usually smaller than the ground truth
and hence darker result when fewer samples are used. This prob-
lem is alleviated with denser sampling. We also observe that the
color error at or around the reflectance edges of the texture is more
significant. This suggest that high frequency textures would need
higher resolution sampling images.

K = 12,000  K = 6,000  K = 3,000  

Output

Input

Interpolated value   < True valueDesired Image

(a) (b)

(c) (d) (e)

Projector 
response 
function

Figure 10: (a) A desired image to be displayer on the "paint" sur-
face. (b) A diagram to illustrate why linear interpolation cause
underilluminated problem in our method. (c-e)The display result-
s with radiometric compensation using different numbers(3000,
6000, and 12,000) of samples.

Another limitation is that our approach cannot handle a texture
with extremely high spatial frequency since the multidimensional
sample set is constructed using projector-camera-surface pixel-to-
pixel corresponds. It is impossible to obtain correct response xi for
a projector pixel pi if the pixel fall in an area with extremely dif-
ferent spectral reflectances in presence of effect of the point spread
function of a pixel. Figure.11 (please zoom in for details) shows the
color artifacts and slight hue shift due to the sampling on high fre-
quency color textures. Use of higher resolution projector and cam-
era would alleviate this situation. However, note that no prior work
explicitly assures hue preservation and therefore such hue shifts can
also occur when using these methods as well for random content.
However, in our case, we are aware that the particular scenario of
high-frequency textures trigger the hue-shift.

5. Conclusion

In summary, this paper presents a practical radiometric compensa-
tion method for projection display on textured surfaces with im-
perfect projectors. By formulating the radiometric compensation
problem to a multidimensional interpolation problem, sampling ef-
ficiency and color reproduction accuracy could be significantly im-
proved through local interpolation. The effectiveness of our pro-
posed method is validated in various experiments, and our method
significantly outperforms two state-of-the-art methods.

In the future, we plan to augment our method with content adap-
tive quality optimization to alleviate the effects of gamut map-
ping. We plan to explore other pattern design algorithms towards
better spectral reflectance recovery. We also plan to explore non-
linear high dimensional scattered data interpolation (e.g. Kriging

(d)

Our results

Results of the previous method

Figure 11: The comparison of our and the previous
method [GI15]’s compensated displays of a desired image
on two textured surfaces(higher frequency, lower frequency). Our
method uses two sampling images while the previous method use
125 sampling images. Note that our display shows some hue shift
artifacts for the first high frequency texture.

[OW90]) to reduce color artifacts. We aim to further enhance sam-
pling efficiency and color accuracy using content-adaptive pattern
images instead of content-independent low-discrepancy patterns,
and accelerate the method via the data structure for organizing high
dimensional data (e.g. k-d tree) [AGDL09]. We also plan to explore
the optimal combination of color patches to create a well-sampled
multidimensional sampling set for spectral reflectance recovery.

The previous work [VNS16] has shown how to separate re-
flectance and structured illumination, so it is able to acquire re-
flectance from single structured light images in the process of ge-
ometric registration, which can further reduce acquisition images
using combined geometric and radiometric data acquisition [SSC-
S17]. In order to ensure the robustness of our method, geometric
registration and reflectance acquisition are accomplished indepen-
dently in the paper, but we would like to explore the possibility of
combining the image captures for geometric and radiometric com-
pensation.
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