
Computer-Aided Design 46 (2014) 233–238
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Technical note

Puzzhull: Cavity and protrusion hierarchy to fit conformal polygons
Shanaz Mistry, U.N. Niranjan ∗, M. Gopi
University of California, Irvine, USA

h i g h l i g h t s

• We define cavities and protrusions of a 2D polygon which are key geometric features of a polygon.
• We propose an algorithm to compute cavities and protrusions.
• We propose a method for 2D polygonal piece fitting using a hierarchy of geometric features defined by cavities and protrusions.

a r t i c l e i n f o

Keywords:
Cavity polygon
Protrusion polygon
Convex hull
Hierarchy
Geometric transformation

a b s t r a c t

In this paper, we present a simple definition for, and a method to find, cavities and protrusions of a 2D
polygon. Using these, we fit conformal polygonswith each other, which is similar to a jigsaw puzzle and in
a general case is NP-hard to solve. We first build a hierarchy of cavities and protrusions for each polygon
and use this hierarchy to check for matches between these geometric features of two polygons. This data
structure allows for early rejection of mismatches and thus speeds up the fitting process. We show using
many examples, that most of the common configurations in exact polygon fitting can be handled by this
algorithm in polynomial time. In case of exact, yet non-unique matches, this algorithm will solve the
problem in exponential time.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Given a finite number of 2D simple polygonal pieces (i.e., genus
zero, orientable, no self-intersections), our goal is to find the pieces
which are completely conformal with each other and fit them to-
gether. Closely related problems include the 2D irregular nesting
problem, the cutting stock problem, and scheduling problems [1].
Most optimization problems of practical interest are computation-
ally hard to solve [2]. In recreational mathematics, the problem of
solving jigsaw puzzles is NP-complete [3]. In this paper, we focus
on scenarios that are arguably common and solve such an instance
using a novel and efficient data structure.

The classes of the fitting problem which are handled by our
algorithm are:

(i) Exact unique matches: In this case, for every site (cavity or pro-
trusion of a polygon), there exists at most onematching polyg-
onal site, which has a perfect geometric matching in terms of
area, perimeter, and edge length.

(ii) Exact non-unique matches: In this case, for every site (cavity or
protrusion of a polygon), there may be more than one match-
ing polygonal site.

∗ Corresponding author.
E-mail addresses: symistry@uci.edu (S. Mistry), un.niranjan@uci.edu

(U.N. Niranjan), gopi@uci.edu (M. Gopi).

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.08.038
1.1. Main contributions

In this paper, we consider the problem of fitting conformal 2D
simple polygonal pieces, wherein the pieces completely fit with
each other and we are allowed access to only the geometric infor-
mation of the polygonal pieces, and not other features such as col-
ors and textures provided in the jigsaw puzzle problem. Following
are the main contributions of the paper:
(i) We present a new definition of the geometric features of a

polygon such as cavities and protrusions. We then present an
algorithm using convex hulls to compute these features, each
of which is a polygon by itself.

(ii) We propose to recursively compute the cavities and protru-
sions present in a polygonal piece, and build a hierarchy of
these geometric features. Essentially, it decomposes any in-
put piece into multiple geometrically related sub-parts. Our
hierarchy is rotation, uniform scale, and translation invariant.

(iii) We propose a method to use the hierarchy to find the fitting
between two input polygonal pieces. The nodes representing
cavities of one polygon is compared with the nodes repre-
senting the protrusions of another. This is how we reduce the
search space to find the conformal regions. We use a variant
of tree isomorphism on this hierarchy to do early rejection of
non-matching polygons. Since the number of nodes in the hi-
erarchy is also dependent on the number of features rather
than the number of edges, the total complexity of the algo-
rithm is output-sensitive.

http://dx.doi.org/10.1016/j.cad.2013.08.038
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2013.08.038&domain=pdf
mailto:symistry@uci.edu
mailto:un.niranjan@uci.edu
mailto:gopi@uci.edu
http://dx.doi.org/10.1016/j.cad.2013.08.038


234 S. Mistry et al. / Computer-Aided Design 46 (2014) 233–238
Fig. 1. Schematic summary of our method for fitting polygons that are conformal using the geometric features extracted into a hierarchy.
(iv) For non-unique exact matching, we propose a backtracking-
based algorithm to find the solution.

However, we also note that our algorithm handles neither ap-
proximate fits nor those inwhich there exists no edge-to-edge cor-
respondence between cavities and protrusions. Our algorithmwill
also work only if every cavity or protrusion polygon has at least
one edge that is not part of the original polygon. In other words,
an all-convex polygonal set of pieces has no cavity in any of its
polygon and hence will not yield any result from our algorithm. In
such a case, a simple edge–edge comparison between the polygo-
nal pieces and an exhaustive search for match [4] can be used.

The pipeline of our algorithm is shown in Fig. 1.

2. Related work

In computer vision, image recovery from pieces of the original
image is a fundamental problem. There are learning-based
approaches to solving puzzles, which typically use features of
the dataset, rather than using just the geometric information to
recover a broken image. In [5], matching is performed using global
features called isthmii which can be either positive or negative.
These features are extracted using the exoskeleton of the pieces.
For example, when the location is given but the orientation of the
pieces has to be determined, a model based on Markov Random
Field has been used in [6]. In the patch-based approach of [7],
the solution is obtained by determining the most likely patch
configuration.

Another method of solving 2D cutting stock problems is using
the Minkowski sum hull, as described in [8], that gives the outer
and inner envelopes which are then used to perform matching.
In the No Fit Polygon (NFP) approach [9,10], one polygon is kept
fixed while a second polygon is moved along the boundary of the
first polygon, keeping a specific point of the second polygon in
contact with the first polygon at all timeswithout overlap between
polygons. The external polygon created by such a procedure gives
the NFP. In [11], NFP is used by fitting the shapes using rectangular
enclosures to minimize wastage.

In [12], the similarity of curves is computed using a matching
cost function which takes into account the length and the
orientation of curve segments. They also extend their approach
to 3D where they perform space curve matching by computing a
metric based on speed, curvature and torsion of the space curve.
This method, being an instance of local shape matching, is similar
to our method in checking for local fits.

In [13], convex and concave features of parts are extracted to
provide matches between different shapes. The extracted features
have a three edge limit. This process is similar to our algorithm
in that it extracts convex and concave edges, but our algorithm
considers the area as a whole, which allows for efficient local
matching to be performed.

Many solutions have been studied and proposed to solve the
2D nesting problem and its variants. One such method, which
is similar to our approach, is that of geometric matching using
polylines [4]. They perform partial shape matching by computing
the similarity of a set of polylines to a polygon, both providedby the
user. In the current work, themain contribution is to automatically
generate the polylines for computing the similarity through a
Fig. 2. Results of cavity polygon computation showing the input polygon, the cavity
polygon capped by the virtual edge e1 , and the cavity polygon capped by the virtual
edge e2 .

decomposition of the polygon using a novel convex hull hierarchy
called the cavity–protrusion hierarchy. Further, our matching is
performed simply by comparing the area, the perimeter, the edge
lengths, and the structure of the hierarchy.

3. Cavities, protrusions, and the hierarchy

Let Q ⊂ R2 be a simple polygon. Let H be the convex hull of
Q . Let Cj be the set of all open connected regions of H \ Q . We
define each polygon given by the closure C̄j, as a cavity. The edges
ofQ in each cavity are called cavity edges, and the edges ofH in the
cavities are called virtual edges. Every cavity will have exactly one
virtual edge ‘‘capping’’ it (Fig. 2). The protrusions are formed by the
regions of the input polygon between two consecutive cavities.We
define the protrusion polygon in Section 3.2 constructively.

The concept of cavities and protrusions forms the building block
of the hierarchy. Note that the cavities and protrusions are poly-
gons themselves. Hence, cavity–protrusion construction can be
recursively performed on each of these polygons to create the hier-
archy. This hierarchy is an n-ary tree. Each node of the tree repre-
sents a polygon, and each child represents a cavity or a protrusion
polygon. Henceforth, we use the term polygon to refer to either
the input polygon Q , or the cavities and protrusions of Q (which
are denoted as P), the meaning being clear from the context. We
define negative space as the area being outside the input polygon
Q and positive space as the area being inside Q .

3.1. Cavity polygon computation

From the definition of a cavity and a virtual edge, we observe
that every convex hull edge that is not a polygon edge is a virtual
edge. Further, the number of cavities is same as the number of
virtual edges, and along with the sequence of edges between
the end points of the virtual edge, constructed only from the
polygon edges and not convex hull edges, we can compute the
corresponding cavity. This leads to a very simple cavity polygon
computation method (Algorithm 1).

In this paper, we assume the cyclic ordering of edges. We also
assume that both the convex hull polygon and the given polygon
edges are ordered in the same direction. Given this assumption,
for each convex hull edge that is not the given polygon edge, i.e.,
for each virtual edge, we find the sequence of polygon edges in
the same cyclic order from the start and end points of this virtual
edge. These polygon edges are guaranteed not to be part of the
convex hull. These polygon edges along with the corresponding
virtual edge will form a cavity polygon. Algorithm 1 can be applied



S. Mistry et al. / Computer-Aided Design 46 (2014) 233–238 235
Fig. 3. Results of protrusion polygon computation showing the input polygon
with cavities C1 and C2 , the convex hull of the cavity edges and the polygon edges
between them, and the protrusion polygon capped by e4 .

recursively on each generated cavity polygon. Note that the cavity
of a negative space polygon is a positive space polygon and the
cavity of a positive space polygon is a negative space polygon.

Algorithm 1 Cavity Polygon Computation
Require: Hierarchy tree node for a polygon P
Ensure: Cavity polygons Ce created as children of P
1: Compute convex hull H of P
2: while edge e ∈ H do
3: if e /∈ P then
4: Find edges e1, . . . , ek ∈ P between the end-points of e
5: P ′ = polygon using edges e, e1, . . . , ek
6: Tree node Ce = (P ′, area(P ′), perimeter(P ′))
7: Add Ce as a child of node P
8: end if
9: end while

3.2. Protrusion polygon computation

Let Ci and Ci+1 be two consecutive cavity polygons of a polygon
P . Consider the cavity edges of Ci and Ci+1 along with the edges of
P between them (in sequential order). Compute the convex hull of
this combined set of edges. From this convex hull, eliminate the
virtual edges of Ci and Ci+1. For each virtual edge that remains,
the processing is similar to the cavity polygon computation: We
consider all the polygon edges that lie between the end-points of
the virtual edge in order. These edges along with its corresponding
virtual edge constitute the edges of the protrusion polygon. This
procedure is summarized in Algorithm 2.

Algorithm 2 Protrusion Polygon Computation
Require: Polygon P and its list of cavities C
Ensure: Protrusion polygons B created as children of P
1: for i = 1 : n (mod (n+ 1)) do
2: E = Ci, Ci+1, and edges of P that lie between Ci and Ci+1
3: H = convex hull of E
4: end for
5: while virtual edge e ∈ H do
6: if e is not a virtual edge associated with Ci or Ci+1 then
7: Find edges e1, . . . , ek ∈ P between the end-points of e
8: P ′ = polygon using edges e, e1, . . . , ek
9: Tree node B = (P ′, area(P ′), perimeter(P ′))
10: Add B as a child of node P
11: end if
12: end while

In Fig. 3, consider the cavities C1 and C2. The edge of the polygon
between C1 and C2 is e2. Taking the convex hull we obtain the edges
e1, e2, e3, e4, e5. Consider the virtual edges in this polygon e1, e3
and e4. Since e1 and e3 are the virtual edges of the cavities, we
remove them. The polygon capped by the rest of the virtual edges
are the protrusion polygons. In this case, we obtain the one capped
by the edge e4.

Note that the protrusion polygonswill be inside the convex hull
of the original polygon, but parts of it may be outside the original
polygon; this helps in better matching between cavities and pro-
trusions (Fig. 4).
Fig. 4. The given polygon and two cavities can be processed to get two protrusions.
Note that parts of P2 are outside the given polygon. But this helps in finding
an appropriate cavity (C) that this protrusion can fit into. Geometric features in
the regions of the protrusion that is farther from the cavity does not affect the
physical fitting into the cavity. But these features will affect the area/perimeter of
the protrusion—the quantities that are used to find a matching cavity. In our case,
the effects of these farther features are nullified by design, by capping that region
to be convex using a virtual edge, uniformly for all protrusions. This will lead to
portions of the protrusion to be outside the given polygon.

The protrusion polygon computation is performed for every
pair of consecutive cavity polygons obtained from the immediately
preceding cavity polygon computation step. Algorithm 2 can be
applied recursively on each generated polygon. Note that the
protrusion of a negative space polygon is a negative space polygon
and the protrusion of a positive space polygon is a positive space
polygon.

3.3. Construction of the hierarchy

Algorithm 3 Hierarchy Computation
Require: Polygon P
Ensure: Hierarchy
1: if P is present in the hierarchy OR P is convex OR P is a sectional

polygon then
2: return
3: end if
4: C ← Compute Cavity Polygons(P) {C are children of P}
5: D← Compute Protrusion Polygons(P, C) {D are children of P}
6: For each polygon F in C ∪ D, Hierarchy Computation(F)

In the hierarchy, the root node is the input polygon and the
children are its cavities and protrusions. This procedure is done
recursively on each of the computed polygon (Algorithm 3). We
also compute and store the area and perimeter of each polygon in
the nodes of the hierarchy. We also store the sign of the polygon
indicatingwhether it is a positive space polygonor a negative space
polygon. This is later used to compute the canonical names while
checking for tree isomorphism during the matching process.

An interesting consequence of the hierarchy construction
procedure is that cavity analysis of a polygon results in a reversal
of signs, and protrusion analysis results in retaining the sign of the
parent. If a polygon has n virtual edges, the node that represents
the polygon in the hierarchy has 2n children, exceptwhenmultiple
protrusion polygons are formed. We note that the hierarchy itself
(nodes and their parent–child relationship) is invariant to rotation,
uniform scale, and translation. The area and perimeter can be
recomputed for each node in case of uniform scale.

An example of the hierarchy construction is illustrated in Fig. 5.

4. Matching of polygonal pieces

Once the hierarchy has been extracted for each input polygo-
nal piece, we match one piece to another. In exact matching, we
specifically look for edge–edge matches. Ideally every edge se-
quence of every length of a polygon has to be compared with all
edge sequences of the same length in the other polygon. Our hi-
erarchy chooses edge sequences that define certain geometric fea-
tures (such as cavities and protrusions) and aremore likely to form



236 S. Mistry et al. / Computer-Aided Design 46 (2014) 233–238
Fig. 5. Hierarchy construction: polygon 1 is the given polygon. Protrusions between the cavities 2→ 7 are 12 and 13, but the protrusion between the 7→ 2 is the original
polygon itself which is one of the terminating conditions of the hierarchy construction. A similar condition holds for polygons 2 and 13. Further, if there is only one cavity,
the protrusion formed by the lone cavity is the original polygon (polygons 7, 8, 15). Finally, when a positive space polygon has more than one edge that is not part of the
original polygon, such a polygon is lessmeaningful to our application and hencewe terminate that subtree of the hierarchy (e.g. polygon 17).We term such polygons sectional
polygons.
Fig. 6. Subtree isomorphism: (1) Original piece S1 . (2) Hierarchy for the polygon S1 with highlighted subtree for polygon 7. (3) Subtree for polygon 7 showing the parameters
for performing tree isomorphism. (4) Original piece S2 . (5) Hierarchy for the polygon S2 with highlighted subtree for polygon 11. (6) Subtree for polygon 11 showing the
parameters for performing tree isomorphism.
matching parts of two polygons. Of course, any edge sequence
based on any other relevance criteria can be chosen, and its cavities
and protrusions can be computed and added. This property makes
the hierarchymore general and suitable for other applications also.

Our polygon matching algorithm is given in Algorithm 4. Note
that the root node is the original polygon, and is a container node.
So the polygon pair checking is done from their children. The goal
of this method is to do as many early rejections as possible. We
reject polygon pairs if both of them are positive or both are neg-
ative space polygons. We also reject if the negative space polygon
is smaller than the positive space polygon, since the positive piece
cannot be fit into the negative space. We go down the hierarchy
if the negative space polygon is larger than the positive space. If
the areas are equal, then there are two possibilities: either they fit
perfectly or do not fit. If they fit, then the geometric structure of
these negative and positive pieces should be exactly the same, and
hence the subtrees rooted at these trees have to be isomorphic. But
the trees may look similar even with minor changes in the geom-
etry. So the leaf nodes during isomorphism checking are also or-
dered based on their area, and then compared with the other tree.
If they match, then the rotation and translation of one piece to fit
to the other is computed. If such a transformation does not cause
the polygon–polygon intersection, then this pair is selected as one
of the matching pairs.

Subtree isomorphism: The positive and negative space polygons
form subtrees in the hierarchy. If the pieces fit, the subtree of
the hierarchy corresponding to these two polygons will exhibit
isomorphism which corresponds to a consistent mapping of
vertices and edges of the puzzle pieces, in the fitting region, up
to scale. We use a variant of the classical Aho–Hopcroft–Ullman
tree isomorphism algorithm for our implementation (for other
related algorithms, see [14] and the references therein). In our
isomorphism algorithm, instead of computing just one canonical
name for eachnode,we compute two. Thenegative canonical name
computed by combining the canonical names of the root node’s
negative children and the positive canonical name computed
by combining the canonical names of the root node’s positive
children.We store the area, perimeter and number of edges of each
leaf node in the subtree while computing the canonical names.
If the negative canonical name of Ci matches with the positive
canonical name of Pj and vice-versa, we say that the two subtrees
are isomorphic and hence could be a potential match.We compare
the stored geometric parameters to find exact matches. Fig. 6
illustrates our isomorphism algorithm.



S. Mistry et al. / Computer-Aided Design 46 (2014) 233–238 237
Fig. 7. Results of our algorithm, along with the hierarchies of the input polygons, on an example of the exact unique matching case.
Algorithm 4Matching
Require: Hierarchies of two polygons P1 and P2 which are compared for a

possible match
Ensure: List of matches
1: Enqueue children of root of P1 and P2 as Queue1 and Queue2
2: while Queue1 ≠ φ do
3: Dequeue node N1 from Queue1
4: while Queue2 ≠ φ do
5: Dequeue node N2 from Queue2
6: Reject, if sign(N1)=sign(N2) {since both are positive space or

negative space polygons}
7: Reject, if area(N1)>area(N2) AND N1 is positive space
8: Reject, if area(N1)<area(N2) AND N1 is negative space
9: if area(N1)>area(N2) AND N1 is negative space then
10: Matching(child of N1,N2), ∀ children of N1
11: else if area(N1)<area(N2) AND N1 is positive space then
12: Matching(child of N2,N1), ∀ children of N2
13: else if area(N1)= area(N2) then
14: Check isomorphism of subtrees rooted at N1 and N2
15: Use point correspondences to compute affine transformation
16: Reject, if polygons intersect, else add (N1,N2) to List of

matches
17: end if
18: end while
19: end while
20: return List of matches

For the worst-case asymptotic running time of our pairwise
matching algorithm, note that, since we use convex hull compu-
tation as subroutines, the tighter bounds on the time complexity
are output-sensitive, theworst case beingO(p log p), where p is the
number of points whose convex hull is computed to obtain a sin-
gle node of the hierarchy. The time complexity of a single execution
of the tree isomorphism subroutine is O(s) where s is the number
of nodes of the subtree, i.e., it depends on the number of features,
and specifically, not on the number of edges of the polygon. In the
worst case, matching two input polygons using their hierarchies
takes O(NM) time, where N andM are the number of nodes in the
hierarchies of the input polygons.

4.1. Global fitting of polygons

The final step is performing the fitting itself. When subtrees of
the hierarchies corresponding to the input polygons exhibit iso-
morphism, we compute point correspondences based on any leaf
node combination. We then transform the second polygon based
on the affine transformation matrix generated using the point cor-
respondences, and check if the polygons intersect. If the polygons
do not intersect, they are added to the list of matches.

Given the list of matches, if the polygons have exact unique
matches, each cavity will have no more than one protrusion
matched with it. But if the matches are non-unique, then we need
to pick the best match for a cavity out of many protrusions that
wouldmatch it. In such cases, we use a backtracking basedmethod
(Algorithm 5) to find the best combination of matches.
Algorithm 5 Graph-based Search
Require: List of all matches {Sorted in descending order of area of the

fitting region, for each pair of polygons}
Ensure: The solution to the fitting problem
1: Transform the polygon pair having the highest area of the fitting

region
2: if Polygons do not intersect then
3: Add transformed polygons to the solution
4: else
5: Backtrack by removing the intersecting pair and checking the next

pair in List of all matches
6: end if

Fig. 8. Results of our algorithm on other examples of the exact unique matching
case.

Table 1
Summary of the results of the experiments in Figs. 7–9 (compute times are in
seconds).

Number of features Hierarchy
depths

Hierarchy
build time

Matching
time

Fitting
time

16, 22 8, 8 1.5 0.25 0.07
28, 14, 19, 33, 25, 17 4, 5, 4, 4, 5, 3 3.22 9.26 0.04
19, 26, 13, 28, 31, 22 4, 3, 4, 5, 4, 4 2.85 8.54 0.07
24, 34, 33, 50 4, 6, 4, 6 3.31 5.84 0.02

5. Test cases and results

Exact unique match: In an exact uniquematch, every input poly-
gon has unique negative and positive space polygons. As a result,
each negative space in a piece matches with exactly one positive
space in another piece and vice-versa. Figs. 7 and 8 illustrate this.
Table 1 shows the time taken to compute the hierarchy, matching
and fitting for the examples shown in this paper.

Exact non-unique match: In an exact non-unique match, there
can be polygons that have non-unique cavities or protrusions. As
a result each cavity in a piece can match with more than one pro-
trusion in other pieces and vice-versa. This produces ambiguous
matches (Fig. 9).



238 S. Mistry et al. / Computer-Aided Design 46 (2014) 233–238
Fig. 9. Results of our algorithm on an example of the exact non-unique matching
case.

Limitations of our method: In a general problem setting, any
sequence of edges of two polygons can fit with each other. This
requires comparing the exhaustive list of edge sequences of all
lengths. Ourmethod prioritizes specific edge sequences to bemore
descriptive of the geometric features and arguably more likely to
fit with each other. Since in a general case, this problem is NP-hard,
obviously there are many instances of this problem in which those
edge sequences that are not chosen by our method are used in the
final fitting. On the other hand, any sequence of edges that is found
suitable for a particular application can be added to the hierarchy,
along with its cavity–protrusion analysis. This hierarchy can then
be used in the fitting process. In that sense, our fitting algorithm
using subtree isomorphism is general enough to handle all exact
fits.

If all are convex pieces, then there is no cavity to build the
hierarchy. Since in such a situation, no more than one edge of each
of the two polygons will be matched to each other, an exhaustive
search for these edge pairs would be the best way to address this
problem.

6. Summary

In this paper, we propose a novel algorithm for fitting polygonal
shapes by constructing hierarchies of geometric features in
polygons. We use it to perform pairwise shape matching, followed
by a modified tree isomorphism algorithm to perform early
rejection, thus reducing the search space. We selectively compare
geometric parameters such as area, perimeter, and edge lengths
of the decomposed polygons. We use a backtracking-based graph
search algorithm to generate the solution of the fitting problem.

References

[1] Dyckhoff H. A typology of cutting and packing problems. European Journal of
Operational Research 1990;44(2):145–59.

[2] Lodi Andrea, Martello Silvano, Monaci Michele. Two-dimensional packing
problems: a survey. European Journal of Operational Research 2002;141(2):
241–52.

[3] Demaine ErikD, Demaine MartinL. Jigsaw puzzles, edge matching, and
polyomino packing: connections and complexity. Graphs and Combinatorics
2007;23(1):195–208.

[4] Tanase M, Veltkamp RC, Haverkort H. Multiple polyline to polygon matching.
Lecture notes in computer science 2005;3827:60.

[5] Webster RW, Ross PW. A computer vision system that assembles canonical
jigsaw puzzles using the euclidean skeleton and isthmus critical points. In:
Proc. IAPR workshop machine vision applicat. 1990 p. 28–30.

[6] Gallagher AndrewC. Jigsaw puzzles with pieces of unknown orientation.
In: Proceedings of the 2012 IEEE conference on computer vision and pattern
recognition (CVPR). Washington (DC, USA): IEEE Computer Society; 2012.
p. 382–9.

[7] Cho Taeg Sang, Avidan Shai, Freeman William T. A probabilistic image jigsaw
puzzle solver. In: CVPR. 2010. p. 183–90.

[8] LamTF, SzeWS, Tan ST. Nesting of complex sheetmetal parts. Computer-Aided
Design & Applications 2007;4:169–79.

[9] Yao LH, Jun HY. NFP-based nesting algorithm for irregular shapes. In: Proceed-
ings of the 2006 ACM symposium on applied computing. ACM; 2006. p. 963–7.

[10] Burke EK, Hellier RSR, Kendall G, Whitwell G. Complete and robust no-fit
polygon generation for the irregular stock cutting problem. European Journal
of Operational Research 2007;179(1):27–49.

[11] Adamowicz M, Albano A. Nesting two-dimensional shapes in rectangular
modules. Computer-Aided Design 1976;8(1):27–33.

[12] Kong W, Kimia BB. On solving 2D and 3D puzzles using curve matching.
In: Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition, 2001, vol. 2. IEEE; 2001. p. II-583.

[13] Lamousin H, Waggenspack WN, et al. Nesting of two-dimensional irregular
parts using a shape reasoning heuristic. Computer-Aided Design 1997;29(3):
221–38.

[14] Buss SamuelR. Alogtime algorithms for tree isomorphism, comparison, and
canonization. In: Kurt Gödel colloquium. 1997. p. 18–33.

http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref1
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref2
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref3
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref4
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref6
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref8
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref9
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref10
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref11
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref12
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref13
http://refhub.elsevier.com/S0010-4485(13)00178-4/sbref14

	Puzzhull: Cavity and protrusion hierarchy to fit conformal polygons
	Introduction
	Main contributions

	Related work
	Cavities, protrusions, and the hierarchy
	Cavity polygon computation
	Protrusion polygon computation
	Construction of the hierarchy

	Matching of polygonal pieces
	Global fitting of polygons

	Test cases and results
	Summary
	References


