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Abstract—Given the time lapse images of human Neuro Stem
Cells (hNSC) marked by fluorescent proteins, that are obtained
from a confocal laser microscope, we present algorithms to
identify, segment, track, and estimate statistical parameters
of the cells. The structure of these cells are quite complex
and irregular, which makes segmentation and tracking even
more challenging. We use a novel combination of Difference
of Gaussians and a variant of the Watershed algorithm to
segment cells accurately. Our tracking algorithm can identify
not only the temporal path of the cells but also events like cell
divisions and deaths. Our system is robust, efficient, completely
automatic, and removes many drawbacks faced by earlier
solutions. We also propose the first geometric algorithm that
uses Delaunay triangulation, to find the number of the branches
of the cells, which is an important biological feature.
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I. INTRODUCTION

In cellular biology experiments, studying the cell cultures
and their dynamic responses to drugs etc., involve capturing
microscopic time lapse images of these live cultures. These
images need to be analyzed for understanding the cellular
life processes in terms of their metabolism, growth and other
biologically significant processes like cell division, deaths,
cell lineages and fate. The visual data capturing systems
used to take images of the cells produce large amounts of
data per experiment, e.g. time lapse images captured for
eight experimental conditions at ten minute interval for one
week produce two terabytes of uncompressed images (9,000
images). Manually sieving through this large volume of data
is tedious and cumbersome. Therefore we propose to build
an automatic system to acquire semantic information from
the images.

The rest of the paper is organized as follows: In the
current section we highlight our main contributions and
briefly talk about the imaging system used to capture cell
images. In section II we talk about the related work in this
field. In Section III we discuss our core algorithm for cell
segmentation, in Section IV we discuss our algorithm to
identify cell division/death, and in Section V we compute
the cell branch statistics. We conclude in Section VI.

A. Main Contributions

In this paper, we propose novel and robust techniques
to compute the cell locations (nucleui) and the geometry
of the cells. Our method uses a powerful combination of
Differences of Gaussians technique and a variant of the
Watershed algorithm to robustly segment the cells. Unlike
existing techniques (including commercial solutions), our
method does not require user intervention, is extremely fast,
robust, and reliable. Following this, we propose an efficient
algorithm to track the cells over a sequence of time-lapse
images. Our tracking algorithm automatically identifies cell
divisions (mitosis) and cell deaths (apoptosis).

The cells, whose images we are considering in this work,
are arbitrarily shaped. These cells, which are actually neu-
rons, develop many branches, and the number and length of
these branches are of biological importance. Automatically
computing the number of branches is very complex and
no solution currently exists for this problem. Given the
boundary contours of the cell, as computed by our image
processing algorithm, we use an elegant and simple De-
launay triangulation based geometric algorithm to separate,
count, and measure the branches of each cell.

B. Image Capture System:

The images we are working with are of human Neuro
Stem Cells (hNSC), captured by VivaView Incubator Fluo-
rescence Microscope. The system captures images in multi-
channel wide-field fluorescence of at least three different
wavelengths with exposure of 10ms. In our experiment we
used the images of the cells that are cultured with green flu-
orescent protein (GFP), illuminated by 488nm wavelength
laser that corresponds to the fluorescence wavelength of
that protein. The protein marked cells show up as bright
profile in the image. The cells are between 10 − 20µm in
dimensions with magnification of 20x in the images. These
images are 16 − bit grayscale images of intensity values
ranging from 0 − 4096 (12 bits of actual data). The images
are of dimensions 1024 × 1344 pixels and thus capture an
area of 330µm × 433.5µm. Figure 1(Left) shows a typical
image captured by this system.
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Figure 1. Left: Typical image with contrast enhanced. Center and Right: Segmentation with our method.

II. RELATED WORK

The problem of cell segmentation has been worked on for
many years, but segmentation and, in particular, cell seg-
mentation is still an open problem. This is largely because
cells are dynamic entities that vary widely in appearance
and exhibit varied types of behavior. Segmentation of these
images needs to capture such appearance and behavior
correctly in identification of a cell. Although cells extend
to large areas, parts of the cell away from its nucleus get
drastically dimmer in the captured image due to the absence
of the fluorescent protein in those areas. As the cells lack
sharp and contrasting boundaries, segmentation techniques
which use edge detection, such as those proposed in [1] do
not produce accurate results.

Many other more advanced techniques for cell image
segmentation have been suggested in the literature. They
can be categorized into types based on their approach.
Many techniques use the level set segmentation method.
The method used by [2], uses a zero-set of implicit energy
functional, that traces a smooth boundary around cells. But,
using a functional that has arbitrary complexity as required
by our images is infeasible, both in terms of accuracy of its
segmentation and the time it takes to solve the functional.

Another popular approach to cell segmentation is the
Active Contour Model, proposed in [3]. These models take a
combination of cell features such as cell boundary, internal
pixel values etc. and minimize an energy to wrap a contour
around the cell. These methods have the advantage that they
always converge to a solution, and do not require an implicit
parametric boundary definition. But in general they require
external initialization before the minimization can be started.
This method has been used successfully to segment time
lapse images in [4], but as the method relies on spatio-
temporal tracking, it can be unsuitable in some instances.

Model based segmentation approach is another important
class of segmentation technique that identify cells in im-
ages and image sequences based on certain well defined
assumptions about spatial or temporal attributes of cells and
their motion. Methods such as [5] use size and shape based
contours to identify cells. Methods such as the one proposed

in [6] use motion patterns on leukocytes in images of blood
streams to identify cells.

Graph cut methods of image segmentation consider pixels
of an image as nodes of a weighted graph. The weights of the
edges are defined in terms of similarity between the pixels
they connect. The nodes also share an edge to two pseudo-
nodes designated as foreground and background. The weight
is usually a metric in a feature space consisting of pixel
features such as Histogram of Oriented Gradients, etc. The
min-cut problem is solved as a convex optimization problem.
These methods involve user initialization for designating the
foreground and background nodes. This method is used in
[7] successfully. [8] proposes a method of repeated min-cut
solving to separate the foreground pixels and is popularly
known as soft scissors. Additionally these model solutions
require solving a rich feature space for correct attribute
matching at the pixel level. This computation is generally
very expensive.

The watershed approach is a commonly used segmen-
tation technique and is the one we use as a step in our
segmentation procedure. The problem with watershed gen-
erally comes in the form of under and over segmentation of a
region, which is to be avoided if statistically correct segmen-
tation is to be achieved. Our method is largely inspired from
[9] where the authors proposed a method of segmentation
based on Ultimate Eroded Point. The method uses two
erosion structures one for coarse and other for fine erosion
successively. This type of method makes two assumptions:
firstly the shape of structure for erosion needs to capture
the shape of the cells, and secondly, the topography of the
cell image (or the height field) needs to be smooth enough
for erosion to a single point to produce a seed. Methods
that track cells by shape matching are predominant, these
methods use shape descriptors (proposed in [10]). They
represent shapes of cells as a number of binned histograms
for each point on the outline of the shape and perform graph
matching. This method is computationally expensive and
also not suitable for highly concave shapes. The images we
are segmenting (Figure 1) have pluripotent cells. Therefore
the shape and size of the cells varies widely among cells and
between the images of the same cell as time progresses. As a
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result, spatio-temporal model based approaches do not work
on these images. Cells have a coarse (non-smooth) outline,
therefore energy minimization with or without parametric
representation become unsuitable. Graph cut methods (such
as ‘Markov Random Fields’ implementations) require user
initialization, and thus cannot be employed in cases where a
large number of images need segmenting. The GFP-images
are essentially single channel and lack features which help
in segmentation technique applied to segment rich, multi-
channel real-world images. The model we propose in this
paper identifies cell centers robustly using Difference of
Gaussian Enhancement followed by maxima finding, and
segments the image using watershed to give accurate results.

III. PROPOSED METHOD FOR SEGMENTATION

A. Cell Segmentation

Segmentation is the process of dividing the image into
cell regions and background. We carry out the segmentation
in three important steps:

1) cell extent estimation (demarcating the core region of
the cell)

2) robust cell center marking (identifying one point of
intensity maximum)

3) final segmentation of the image based on identified
cell centers

The output of each step is used in the next step. Robustness
of detection of cell centers is an important criterion for
determining the quality of segmentation.

As it can be observed, our images have regions of high
intensity/brightness that contain cells (figure 1). However
one can also see that, not only cell centers but also the
branches have a local maxima of intensity. Finally, there
is a large variation of intensity locally within the core of
the cell which might result in multiple local maxima being
found within the core of the cells. All these reasons make
the cell extent/center estimation difficult.

We find cell centers in step one and two. To robustly iden-
tify the core of the cell, first we identify the regions that are
certain to be cells. To robustly find the cell cores with high
confidence (at the same time exclude the branches) we need
to perform a contrast enhancement that will give consistent
high response within the core of cell and low response to
regions outside. Contrast enhancement by techniques such
as histogram adjustment is prone to exaggerating the local
variations and is thus not suitable for our purpose. Therefore
we convolve the cell image with the Difference of Gaussians
(DoG) kernel as the contrast enhancement technique. As
shown in Figure 2, the DoG filter, which is also called the
Mexican Hat Kernel due to its shape, is a band pass filter.
This method is computationally inexpensive and is easy to
implement.

Difference of Gaussians is applied thus: convolve the
original image with a Gaussian kernel with large sigma and a

Figure 2. Surface of a 2 dimensional Difference of Gaussians kernel

Gaussian kernel with small sigma, then subtract latter from
the former. The size of the Gaussians when large enough
makes the enhanced image invariant to variations within
the cell, which are basically high frequency components
in the image. Convolution with DoG filter gives a large
response from edge to edge as required (see Figure 3). In
our experiments, we found that the sigma values of 12 and
2 for the two Gaussian kernels give good results.

Once we have high response regions that mark the core
of the cells, we can find points of highest gradient. Or in
effect perform an edge detection operation to clearly find
core regions. The edge detection step also picks out some
regions that have high response close to the boundary of the
region we seek. For this we perform a morphological dilation
operation followed by erosion operation. This step connects
the possibly unconnected islands. Lastly, we perform a
morphological open operation with large radius in order to
remove speckle noise found to have high gradients.

In conclusion, in step one of cell segmentation, we ro-
bustly find regions that form the core of the cell. However
as multiple cells can be marked as a single region, we
follow it with further levels of refinement in the next step
of segmentation.

B. Cell Center Marking

When two cells are very close together (either due to their
motion or because they are recently born sibling cells), the
entire region containing the two cells has a large response
under the Difference of Gaussian filter (Figure 5). We need
to identify such regions and their centers.

We perform a low pass filter on the original image to
smooth out local variations, which produces a local maxima
only at the center of the cell. Low pass filtering is done
with a Gaussian kernel having standard deviation 7. In the
smoothed image, we find local maxima only within the
regions found in step one of segmentation. This is necessary
because if all the local maxima were to be found, various
points on branches of the cell would also be identified. The
maxima found in this step account for only cell centers,
because maxima on branches are removed by the DoG filter

97293293



Figure 3. Left: Original image, Center: DoG enhancement, Right: Edges detected on DoG (followed by median filter) overlayed on original. Note that
some parts of the cell are left out.
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Figure 4. (Left to right) A cell with large local variations, plot of intensities in pixels marked with red line in previous image, DoG filtered image, with
same band of pixels and plot of pixels (clamped to range [0,1])

Figure 5. Left: Multiple maxima are found on a cell, Center: The DoG
filtered image, Right: Edges found on DoG filtered image (after cleaning).
Notice only one maxima remains, which is the cell center

and each cell has its own maxima in the region it belongs
to (Figure 5).

With cell centers correctly identified, accurate cell bound-
aries (the region encompassed by whole cell, including
branches) need to be identified and regions with multiple
cells need to be split. For this we use Watershed seg-
mentation. Watershed segmentation is a widely used image
segmentation technique proposed in [11]. Watershed con-
siders the height-field of the image as ridges and basins,
and finds the lines that determine the tips of those ridges.
More formally, the Watershed algorithm returns a relation
W : P ×N , where P is a pixel and N is the integer label for
the basin that the pixel belongs to. Most implementations
of the watershed algorithm return the boundaries where the
mapping changes from one integer to another.

We use the watershed algorithm for splitting regions into
as many cells as there are maxima points (found in step two
as described above). As the ‘basins, or low lying areas, in the
image are demarcated by watershed, the original image is
first complemented to make the cells such low lying regions.
Due to minor variations in pixel values, over segmentation is
a common problem in watershed segmentation. To overcome
this, we suppress minima that lie below a certain threshold in
the inverted image. From our experiment we see that setting
a threshold to a scalar multiple of the mean of the pixels
along the core boundary found in step two is a good way of
controlling the segmentation. If the particular (biological)
experiment’s image consists of many cells, we can set
this scale factor to be a small value (thus avoiding under
segmentation), and a large value if the image is sparsely
populated.

Next, we apply the watershed to the image with minima
suppressed at a scalar multiple of mean of the pixels sampled
from the core. The corresponding regions found at this step
(which contain the cells) are matched against cell centers
found in step two. Every region (a basin in the watershed
algorithm) which contains a cell center defines the entire
extent of that cell (Figure 6).

In conclusion, segmentation is done in 3 steps: first we
identify regions that contain cells (usually marking the core
of each cell), next we find maxima within each region to
identify the regions that contain multiple cells, finally, we
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apply watershed to segment the image into cells and the
segmented cells are identified.

The following table (Table I) summarizes our segmenta-
tion results. The first column of the table indicates the spatial
density of the cells in the images. A higher density image
has more cells in a given area, giving rise to a larger error
in cell identification, in the form of over segmented cells.
This is because the densely packed cells cause a some false
positives for cell centers. We characterize frames with 5 to
15 cells as low density, 15 to 25 as medium density and
more than 25 cells per frame as high density frames.

Density Image
Count in
Series

Manual
Count
of Cells
(Average)

Segmentation
Result
(Average)

Under/Over

Medium 10 35.83 36.16 Over
High 25 25 25.32 Over
Low 10 5.5 5.5 (Neither)

Table I
SEGMENTATION RESULTS CARRIED OVER DIFFERENT SETS OF IMAGES

IV. TRACKING
Tracking is the process of associating a cell in one

image to another cell in the next image. In implementing
tracking, we make the assumption that the changes in cell
characteristics are minimal. This assumption holds as the
images are always captured at a rate that will always record
the changes in the characteristics of the cells. For the purpose
of tracking we define an attribute space such that a cell’s
representation in one image has the smallest Euclidean
distance to its counterpart in the next image of the time lapse
sequence. This attribute space has four features of cells as
the dimensions. These features are chosen so as to capture
the cell’s spatio-temporal definition as closely as possible.
These features are:

1) Pixel-Overlap: the fraction of pixels that lie within two
outlines if they are overlaid

2) Cell area: number of pixels forming the cell body
3) Brightness: the cell’s total brightness(sum of all pixel

values)
4) Distance: Euclidean distance between weighted cen-

troids.

Figure 6. Multiple Maxima within a cell boundary, resolved by in step
three (watershed step)

These attributes are weighted by a scalar in accordance to
the set up of the experiment. For example, when images are
taken at larger intervals, the nearness in Distance and Pixel-
Overlap features have a lower weight as the cells will have
moved a larger average distance between frames. Similarly,
for cells which have large growth rate, the closeness in cell
size attribute has lower weight, and so on.

The process of tracking then becomes computing the
minima of the following function:

∑
i∈Image1

∑
j∈Attributeset

Wi(Xi −Xj)
2

Here, Xi −Xj denote the difference in features between
cells in two frames and Wi is the factor scaling this
difference. Experiment with images in 10 minute interval
has the weights shown in Table II.

Attribute Weight
Cell Size (in pixels) 0.25
Overlap (as ratio) 0.25
Total Brightness (total pixel value) 0.3125
Distance b/w weighted centroids (in pixels) 0.1875

Table II
EXPERIMENT WITH 10 MIN INTERVALS

As it can be seen from section III, robustness of the seg-
mentation is dependent on spatial density of cells, similarly,
the accuracy of tracking is directly affected by the temporal
density of frames. A larger delay between two consecutive
snapshots implies a larger duration in which the cell changes
its appearance and location. This leads to larger margin for
error. Tables III, IV summarize the tracking results.

Incorrect swapping of labels for a pair of cells by the
system is termed ‘mismatch’. Mismatches generally occur
when two cells are very close together in the attribute space
describes in table II ). A cell is termed ‘missed’ if it has a
different label from its self in the previous frame. Cells with
longer trails or span of frames are prone to higher levels of
mismatch. This is because the longer the cells stay in field of
view, the more susceptible the system to make false labeling.

The probability of mismatch scales with the duration of
cell’s existence in the Field of View of the camera, giving
rise to larger mismatch error for such cells. Frames in these
experiments have an approximate 30 cells, with a trail of
40 frames (the longest trail) less than 3.25% error rate is
recorded in our system, (Table IV).

Another point to note here is that in the case of 40 minutes
interval, we cannot find cells that last long enough in the
FOV to capture their entire tracks, this causes better average-
mismatch ratios in table IV.
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Cell’s trail Length in
Frames

(total) Number of
Mismatched cells
pairs

Average missed cells

0-5 (Missed all, debris) NA
5-10 None NA
10-15 None NA
15-20 4 1.25
20-25 7 1.75
25-30 6 1.2
30-50 39 1.95

Table III
TRACKING RESULTS: TIME DELAY 20 MIN

Cell’s trail Length in
Frames

(total) Number of
Mismatched cells
pairs

Average missed cells

0-5 0 NA
5-10 None NA
10-15 4 0.8
15-20 3 0.6
20-25 4 1.25
25-30 6 1.2

Table IV
TRACKING RESULTS: TIME DELAY 40 MIN

V. STATISTICS COLLECTION AND EVENT
DETECTION

A. Statistics Collection

Various measurements about the cells make up important
experimental data for the biologists. The number of branches
also forms an important part of the cell description. There-
fore we propose a novel use of a geometric algorithm to
estimate number of branches described in section V-C.

Once the correspondence between the cells is found across
the sequence of images, various temporal characteristics
such as cell velocity, rate of deformation etc. can be found.
Important biological events (such as Mitosis and death) have
a point of inflection in statistical measure such as size, shape
and number of branches. Identification of such events is
discussed in next section.

B. Event Detection

Cell Split or Mitosis is said to have occurred when a cell
in an image captured at time t is invariably mapped to two
different cells in the image at time t+ ∆t, and each of the
new cells have a large distance on the cell-area dimension
(described in previous section). Also, it will be noticed that
the cell’s total intensity just before mitosis equals the sum
of cell intensities of the daughter cells. This is true because
the brightness of the cell, as described in section I is
proportional to GFP protein content of the cell, and when the
cell undergoes mitosis the protein content is divided among
its daughter cells. Figure 7 shows the process of mitosis
of a cell. Cell Death: When a cell suffers apoptosis in a
culture, it loses its branches and floats away in the medium,

Figure 9. Top: Left to right, cell outline, constrained delaunay triangu-
lation, tringles with edges less than 99th percentile, Bottom: histogram of
edge sizes

this floating is generally similar to Brownian motion and has
much higher velocity than the firmly rooted live cells. Thus
when a cell dies, the cell tracking algorithm usually returns
no match. The best match will have a large distance to the
cell in previous image (Figure 8). Statistically, we term this
event as cell death. Thus, a cell death is also characterized
by its swift mobility – when its speed is far greater than the
average speed of the other cells.

C. Counting branches using Constrained Delaunay Trian-
gulation

Starting with the contour of the cell, we perform Con-
strained Delaunay Triangulation on the boundary. Specifi-
cally, we perform a Delaunay triangulation on the boundary
points of the cell and remove those triangles having edges
outside the cell contour. If the ordering (clockwise or
counter clockwise) of cell boundary points are known, the
triangles formed by the Delaunay Triangulation can easily
be partitioned into two groups those lying within the cell,
and those lying outside. Once we obtain all the triangles
within the cell, we observe that the triangle edges near the
branches of the cell are considerably smaller in length than
the triangles near the central region of the cell. As shown
in Figure 9 edges that are longer than the 99th percentile
(based on edge lengths) are usually the edges that form
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Figure 7. Sequence showing mitosis. L to R: The Cell, Onset of mitosis, Split completes(mitosis identified), (18 frames later) Cells Separate

Figure 8. Cell Death, the cell marked as C moved fast compared to other cells, and in image at right, goes unidentified (marked ’-’)

Figure 10. Steps in finding branch size

the region near the center. These edges are removed and
the remaining triangles correspond to the branches in the
cell. The number of connected components of these triangles
gives us an estimate of the number of branches present in
the cell. Figure 10 explains the entire process of detecting
the number of branches as explained above.

One biologically important statistical pattern that can be
observed is that when a cell is about to undergo mitosis, its

circularity increases (the shape gets closer to that of a circle),
it loses its branches and its protein content aggregates. These
features can be used to predict mitosis, or in other words
candidate cells for possible mitosis in near future can be
identified and reported. This higher level semantic can be
helpful to see ’rate of mitosis’, etc.

VI. CONCLUSION

In this paper we have presented a novel solution to cell
segmentation circumventing the inherent challenges intro-
duced by images of stem cells. In summary, the segmentation
and tracking process is divided into four steps: Cell core
region identification, cell center identification via maxima
finding, final segmentation using watershed and tracking
using attribute matching across images. We show the statis-
tics collection and event detection which is an immediate
consequence of tracking. Biologically important events such
as mitosis and death are successfully identified. We also
present a geometric algorithm to count the branches in a
cell which is an important statistical measure for a cell.
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