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Fig. 1. This figure shows some of our applications in action. From left to right: Our collaborative map visualization application with
two users visualizing different parts of the map at the same time on our 3× 3 array of nine projectors; Our collaborative emergency
management application with two users trying to draw a path to hazardous location and dispatching teams of first responders on
our 3× 3 array of nine projectors; Digital graffiti drawn using our collaborative graffiti application on only six of the projectors. We
deliberately did not edge blend the projectors to show the six projectors clearly; Four children working together on our digital graffiti
application on a 3×3 array of nine projectors.

Abstract—We present the first distributed paradigm for multiple users to interact simultaneously with large tiled rear projection dis-
play walls. Unlike earlier works, our paradigm allows easy scalability across different applications, interaction modalities, displays and
users. The novelty of the design lies in its distributed nature allowing well-compartmented, application independent, and application
specific modules. This enables adapting to different 2D applications and interaction modalities easily by changing a few application
specific modules. We demonstrate four challenging 2D applications on a nine projector display to demonstrate the application scala-
bility of our method: map visualization, virtual graffiti, virtual bulletin board and an emergency management system. We demonstrate
the scalability of our method to multiple interaction modalities by showing both gesture-based and laser-based user interfaces.
Finally, we improve earlier distributed methods to register multiple projectors. Previous works need multiple patterns to identify the
neighbors, the configuration of the display and the registration across multiple projectors in logarithmic time with respect to the number
of projectors in the display. We propose a new approach that achieves this using a single pattern based on specially augmented QR
codes in constant time. Further, previous distributed registration algorithms are prone to large misregistrations. We propose a
novel radially cascading geometric registration technique that yields significantly better accuracy. Thus, our improvements allow a
significantly more efficient and accurate technique for distributed self-registration of multi-projector display walls.

Index Terms—Tiled Displays, Human-Computer Interaction, Gesture-Based Interaction, Multi-user interaction, Distributed algorithms.

1 INTRODUCTION

Large multi-projector planar display walls are common in many vi-
sualization applications. We have seen a large amount of work on
camera-based registration of multiple projectors in such displays, both
for geometry and color [25, 8, 4, 21, 22, 2, 3, 28]. This has enabled
easy deployment and maintenance of such displays. However, a suit-
able interaction paradigm for these displays that can be scaled to mul-
tiple users for large number of display modules across different ap-
plications and interaction modalities is still not available. This has
brought in a belief in the visualization community that limited display
space and interactivity makes it difficult for application users to solve
issues of interactively understanding domain problems. This paper fo-
cuses on providing a new approach of scalable interactive multi-user
interaction for tiled display walls. The final roadblock in the adoption
of any technology is the ease with which users can interact with it.
Our scalable interaction paradigm brings in the hitherto unknown ease
in user interactivity and deployment of it on commodity projectors.
Hence, this work can have a significant impact on wider adoption of
the seamless multi-projector display technology across the visualiza-
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tion community.

Most work in the human computer interaction domain [6, 31, 30, 32,
36, 29, 20, 19, 17, 16, 37, 9, 7] is difficult to scale to multiple interac-
tion modalities, applications, users and displays. Central to this prob-
lem is the fact that almost all earlier works in the domain of interaction
with tiled displays have explored application specific centralized algo-
rithms and architectures which inherently cannot scale with respect to
the number of users and displays due to critical dependency on a sin-
gle server. Further, scalability to multiple applications and interaction
modalities demand careful algorithm design to compartmentalize the
application/interface specific modules from the application/interface
independent ones and has not been explored before.

This paper makes the first effort to design a scalable interaction
paradigm for rear-projected tiled displays that can scale with multiple
projectors, users, applications and even interaction modalities. We ob-
serve that such a general paradigm is only possible with a distributed
architecture that inherently provides mechanisms for scalability. Such
a distributed architecture for multi-projector display walls is presented
in [3] where the display is built by a distributed network of plug-and-
play projectors (PPPs). Each PPP consists of a projector, a camera
and a communication and computation unit, simulated by a computer.
The display is created by a rectangular array of these PPPs on a pla-
nar screen. Each PPP runs an SPMD (single program multiple data)
algorithm presented in [3] that starts by believing that it is the only
display in the environment. It can communicate with its neighbor us-
ing its camera which sees parts of its neighboring PPPs. Using such
visual communication via the cameras and a distributed configuration
discovery algorithm, the PPPs discover the total number of PPPs cre-
ating the tiled display, their array configuration (total number of rows
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Fig. 2. Left: Our prototype PPP with a projector, a camera and a com-
puter; Right bottom: The inexpensive RC servo that can be used to
switch the IR filters back and forth. Right top: The RS-232 8 servo
controller.

and columns) and its own coordinates (its own row and column) in
this array. Following this, the PPPs can align themselves to create a
seamless display using a distributed self-registration algorithm.

1.1 Main Contributions

We use the same distributed architecture based on PPPs presented in
[3] and build a new distributed registration algorithm and a distributed
interaction paradigm on top of it. For interaction, we design a SPMD
distributed interaction algorithm that runs on each PPP following the
registration to allow multiple users to interact with the display using
any kind of interaction modality. The highlights of our distributed
interaction algorithm are as follows.

1. Since we design an SPMD algorithm, it can easily scale to mul-
tiple projectors. Hence, adding and removing PPPs to reconfigure the
display does not necessitate any change in the interaction algorithm.

2. Most modules of our algorithm are application independent.
Hence, to adapt to different 2D applications, only a few application
specific modules need to be modified. This allows our algorithm to
scale to many 2D applications.

3. Similarly, changing the interaction modality requires modifying
a small number of interface dependent modules. This allows our al-
gorithm to scale to different interaction modalities as well (e.g. laser
pointers, gesture-based interface).

4. Unlike a centralized system where all the interaction from mul-
tiple users is handled by a single centralized server, a distributed algo-
rithm distributes the load of handling multiple users to multiple PPPs.
Hence, our algorithm can easily scale to multiple users.

We also propose a new distributed registration technique that
achieves much greater accuracy and is more efficient in terms of per-
formance and bandwidth load than the method presented in [3]. Below
are the highlights of our new registration technique as compared to [3].

1. First, while discovering the configuration of the PPP array, mul-
tiple rounds of visual communication were used via the cameras in
[3]. This required processing multiple patterns for each PPP and con-
verged in logarithmic time with respect to the number of projectors in
the display. The performance was also compromised due to compu-
tationally intensive image processing. In contrast, we design a novel
method in which each PPP uses a single pattern made of specially
augmented QR (Quick Response) codes to discover the display config-
uration and self-register simultaneously in constant time. More impor-
tantly, we achieve this without increasing the network communication
load across the PPPs.

2. Second, [3] uses a distributed homography tree algorithm for
self-registration of the PPPs. This can lead to large misregistrations
(even as large as 10-20 pixels), especially when the PPPs are further
away from the reference PPP. This impacts the scalability of the self-
registration algorithm to a large number of projectors. We present
a novel radially cascading geometric registration method that can
achieve a much superior accuracy.

In summary, our work, for the first time, introduces an entirely dis-
tributed framework for user interaction with tiled displays. In addi-
tion, we improve the existing distributed framework for registering the

Fig. 3. Our setup of a network of PPPs augmented by the IR illuminators
and the IR camera filters.

many PPPs in the display. We first discuss our system in detail in Sec-
tion 2, followed by the distributed interaction paradigm and the im-
proved distributed registration in Section 3 and Section 4 respectively,
concluding with future directions in Section 5.

2 SYSTEM OVERVIEW

Our system consists of N PPPs, each made of a projector, and a camera
connected to a computer. We assume that the projectors and cameras
are linear devices. The PPPs are arranged casually in a rectangular ar-
ray (Figure 3) and overlap with their neighbors (adjacent PPPs). The
PPPs are initially unaware of the configuration of the array that they
are arranged in. Using visual communication via the cameras, a PPP
starts detecting its neighbors whenever its associated camera perceives
some other PPP in its overlapping coverage area with the adjacent PPP.
Using our distributed registration technique (Section 4) each PPP can
discover its neighbor, the total number of projectors in the display and
their array configuration, its own coordinates in the array of PPPs and
finally self-register itself with other PPPs to create a seamless display.
The PPPs use an NTP (Network Time Protocol) clock synchroniza-
tion to achieve a synchronized clock across the multiple PPPs. The
importance of such a synchronization will be evident in the subse-
quent sections when we describe our distributed interaction paradigm.
We also assume that the PPPs use a constant IP multicast group to
communicate.

Once the PPPs are registered, we desire to interact with the dis-
play. We use two kinds of interaction modalities in this paper – 2D
hand gestures and laser based interaction. Though the lasers are bright
enough to be detected easily in the projected images, when using ges-
tures the camera cannot detect visible light gestures reliably because
the screen and projected image obstruct the hand. To handle this situ-
ation, as in [12, 19], we augment our PPP with an IR illuminator and
mount an IR bandpass filter on the camera. These filters are removed
during registration and then put back to resume interaction. The IR
illuminator and the IR filter on the camera allow us to detect gestures
when we touch the screen. We use a standard rear-projection screen
(from Jenmar), which acts as a good diffuser of IR light. In our setup,
we use monochrome cameras without IR cut filters, although we only
used one of the color channels. Figure 2 shows one of our IR sensitive
PPPs and Figure 3 shows our setup. Removing the IR filter during
registration can be achieved automatically by inexpensive RC servos
($10/unit) and can be controlled with serial (RS-232) servo controllers
($20 for controlling 8 RC servos), which are also simple and inex-
pensive. The IR emitter must also be switched off during registration
which could be done via a serial/USB-actuated relay. This can pre-
vent the sensor from getting saturated by both IR and projected visible
light.

1624 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2010



3 THE DISTRIBUTED INTERACTION PARADIGM

In this section, we describe our distributed interaction paradigm in de-
tail. We start by describing the related work in the domain of various
interaction paradigms for large scale displays and comparing our work
with it (Section 3.1). Next we describe our distributed algorithm in
detail in Section 3.2. When describing this, we consider 2D gesture-
based interaction since restricting to a specific interaction modality
allows us to provide a simple explanation. However, we explain ways
to scale to different interaction modalities in the end of Section 3.2.1.
We present implementation details and results in Section 3.3 and 3.4.

3.1 Related Work

Large displays require interaction modalities that match their scale in-
stead of the more traditional mouse and keyboard. The most natu-
ral form of such an interaction is using gestures and several works
have explored it [1, 11, 29]. Since detecting a gesture unambigu-
ously is a difficult computer vision problem, touch sensitive surfaces
[19, 27, 37, 10, 12] have been explored for better localization of ges-
ture dependent features. New devices that can aid when gestures are
ambiguous have also been explored [34]. Parallely, we have seen
the development of interaction devices by which users can convey
their intentions much more precisely without the ambiguity of ges-
tures. These include devices like simple lasers [24], VisionWand [5],
a special touch pad [23], LEDs on tangible devices [20], a remote
control [18], objects with simple geometry like blocks or cylinders
[33], or even a handheld camera [17]. However, all these works focus
on interfaces and hence use a simple single display and single sensor
paradigm.

When using multiple projectors and sensors, new issues arise like
tracking the interaction across multiple projectors and cameras, decid-
ing on a reaction that is unanimous across the multiple projectors, and
reacting in minimal time using minimal network bandwidth. There
have been a few works that use multiple projectors, but they use a
single camera or a pair of stereo cameras. Hence, the interaction
tracking in these systems is centralized and handled by a single server
[18, 35, 36, 20]. Further, the same centralized server decides a suitable
reaction to the gesture and informs the different projectors on how to
react. Though this does not mean that all projectors react similarly,
a centralized server decides and communicates the different reaction
each projector should produce.

Few recent works address systems with multiple projectors and
cameras. [9] uses a laser based interaction paradigm where multi-
ple cameras can detect the location of multiple lasers used by multiple
users. [30] uses multiple cameras to detect gestures of multiple peo-
ple. Although in both these systems the processing of images from
the camera is done in a distributed manner by a computer connected
to each camera, the processed data is then handed to a server that finds
the 2D position of the gesture directly or by triangulation. The same
server is responsible for managing the projectors and hence it decides
the reaction for each projector and communicates it to them. Thus,
these works all have in common the centralized architecture where a
single server is responsible for tracking the gesture and then reacting
to it. Distributed rendering architectures [13, 14, 15] also follow a
similarly centralized architecture where the rendering takes place in a
distributed manner in computers attached to each projector, but they
are controlled by a centralized server that manages how the rendering
should be distributed.

Comparison with Our Work: In contrast, our work focuses on a
completely distributed paradigm where each PPP acts as self-sufficient
module. Unlike previous work, where the projectors and cameras are
treated as different devices, we view the display as a distributed net-
work of PPPs. Our goal is to develop a single program multiple data
(SPMD) algorithm to be run on each PPP that would detect and track
the user action in a completely distributed manner affecting only the
PPPs that see the action. Further, an appropriate reaction should be
produced by the relevant PPPs in response to the gesture, even if the
gesture does not occur within them. This assures minimal network
bandwidth usage since all PPPs do not communicate to a single cen-
tralized server and minimal time since the processing is shared by mul-

Fig. 4. The Distributed Interaction Paradigm.
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Fig. 5. This figure describes the action data type used in gesture man-
ager and the event data type used in reaction manager.

tiple PPPs and is not the responsibility of a single centralized server.
Such a distributed paradigm allows easy scalability to multiple dis-
plays, applications, interaction modalities and users.

3.2 The Algorithm

We consider interaction to be a set of two operations that occur con-
secutively: (a) a 2D gesture made by the user; and (b) a consequent
reaction provided by the display. We assume that a gesture is a se-
quence of samples, also called actions, detected by the system. These
samples can be generated through a multitude of input systems includ-
ing touch – by placing the palm on the screen, or laser pointers. The
meanings of isolated or temporal sequences of actions are predefined
by applications for consistent interpretation. Note that since a gesture
occurs over an extended period of time, it can span across multiple
PPPs moving between the non-overlapping and overlapping areas of
the PPPs. Further, it is important that the reaction does not wait for the
gesture to complete. For example, if the user is moving his/her hands
from left to right, he/she is expecting the underlying image to move
from left to right even before he/she completes the gesture. Hence, the
goal is to identify the gesture even when it is not complete and start
reacting as soon as possible.

Our distributed interaction paradigm consists of two main compo-
nents: a distributed gesture management module (Section 3.2.1) and
a distributed reaction management module (Section 3.2.2). These are
run as two threads in a producer-consumer fashion in each PPP (Fig-
ure 4). The distributed gesture management module produces a queue
of actions that are then processed (or consumed) by the distributed
reaction manager in an FCFS manner. Note that though the user’s in-
tentions are interpreted per gesture (which is a series of actions), the
processing of these gestures is done per action. This difference in the
granularity of interpretation and processing allows the system to re-
spond to a gesture as soon as it commences without waiting for its
end. Finally, the distributed gesture management is application inde-
pendent. The application specific modules occur only during reaction
management.

3.2.1 Distributed Gesture Management

In a distributed network of PPPs, there is no centralized server that
manages the observed actions of the user. Each PPP is responsible for
managing the actions that occur within its domain. When the gesture
spans across multiple PPPs, we design a mechanism to track it and
hand over its management from one PPP to another as it moves across
PPPs. This is achieved in a manner transparent to the user. Further, our
framework can handle multiple users each doing single hand gestures.

The distributed gesture management involves (a) a shared action

1625ROMAN ET AL: A SCALABLE DISTRIBUTED PARADIGM FOR MULTI-USER INTERACTION…



Fig. 6. This figure shows a few different types of hand postures used
for gesture-based interaction. Each application can define its own in-
terpretation for each posture. For example, in our map visualization
application, touching the screen with two fingers is used to change the
displayed layer, touching it with one finger is used to open and close in-
dividual working windows, sweeping with an open hand is used to move
the map around and twisting a closed hand is used for zooming in and
out. On the other hand, in our graffiti application, two fingers are used
to bring up a color palette, one finger to select a color from the palette
and any other postures to draw lines.

management mechanism to decide which PPP handles which part of
the gesture via their reaction managers, and (b) shared gesture tracking
to follow the path of the gesture as it moves across multiple PPPs and
is facilitated via an anticipatory action communication mechanism.

Action Data-Type: First we describe the action data structure (Fig-
ure 5) filled up by a PPP when it detects an action. This consists of
action specific attributes like position, orientation and size of the hand,
detecting PPP ID and timestamp (synchronized by NTP) in the detect-
ing PPP. The timestamp needs to be included in the attributes to handle
race conditions, described in detail in Section 3.2.2. The position is de-
noted in the global coordinates of the display. Note that since each PPP
knows the exact configuration of the entire display and its position in it
in the post-registration phase, it can easily calculate the global position
of the action. The action also contains some gesture specific attributes
like gesture ID, gesture type, speed, and acceleration. As soon as the
commencement of a new gesture is identified, a new gesture ID is gen-
erated. When detecting the ith gesture in the jth PPP, 0 ≤ j < N, the
PPP assigns a gesture ID of i ∗N + j. Hence, the identity of the PPP
where the gesture commenced can be deciphered from the gesture ID
field of the first action in that gesture. Gesture type refers to the type
of hand posture which when seen over a period of time constitutes the
gesture (Figure 6). The speed and acceleration of the gesture denote
its local speed and acceleration at the time when this component action
was made in the gesture. The speed and acceleration is computed by
finding the differences of the position and speed respectively in two
consecutive actions in a gesture.

To detect a gesture, the PPP first recognizes the first action of the
gesture in its camera frame. At the commencement of the gesture,
the gesture type is set to be undecided. To detect the gesture type
robustly and reliably, a few of the initial actions are examined. Each
of these actions votes for one particular gesture type. The gesture type
that receives the maximum votes is selected as the type of the gesture.

Shared Action Management: The shared action management
scheme enqueues the constituting actions of a gesture as it moves
across the display through multiple PPPs. When an action that does
not belong to any previous gesture is detected, it indicates the com-
mencement of a new gesture. If this new action or part of it occurs in
the non-overlapping region of a PPP, since no other PPP can see this
action completely, this PPP bears the responsibility to enqueue this
action to be processed by its reaction manager. However, when the
action occurs in the overlap region of multiple PPPs, it is desirable for
only one PPP to enqueue it for processing by the reaction manager.
This avoids inconsistent reaction from multiple PPPs. To assure this,
when in the overlap region of multiple PPPs, the gesture is only han-
dled by the PPP with the smallest ID. Figure 7 illustrates this process.
A and B denote two gestures. A starts in the non-overlapping area of
projector 2. As soon as it enters the overlapping region of 1 and 2, 1
picks up the gesture since it has the smaller ID of the two projectors.
After this, note that 1 continues to handle the gesture even though it
moves through the overlap of 1 and 2, overlap of 1 and 4, overlap of
all four projectors, overlap of 1, 3 and 4, and overlap of 1 and 3. Only
when the gesture moves to non-overlapping area of 3, it is handled by
3 since no one else can see it. Similarly, in gesture B, when it starts
in the overlap of 2 and 3, it is first picked up by 2. Then it is handled

1 2

3 4

2
1

3 3 4

2

A

B

Fig. 7. This figure shows how the gestures made across multiple PPPs
are handled in a shared manner by multiple PPPs in their lifespan. A and
B denotes two different gestures. The length of the gesture is divided
and labeled to show which PPPs handle which part of the gesture.

by 4 in the non-overlapping area of 4. But as soon as it moves to the
overlapping area of 4 and 3, 3 starts to handle the gesture.

Shared Gesture Tracking: The gestures are tracked in a shared
manner by multiple PPPs when they span multiple PPPs. This is
achieved via the temporal and spatial proximity of consecutive actions
in a gesture. If an action is close temporally and spatially to another
action, it is assigned the same gesture ID and type. If an action is
temporally or spatially far away, it is considered the commencement
of a new gesture. This can happen when two users are interacting
simultaneously with the same PPP. For this purpose, a threshold has
been defined that tries to make a compromise between allowing fast
gestures and correctly separating different gestures.

When the gesture management migrates from one PPP to another,
we use an anticipatory action handover mechanism to handle it. When
a PPP is tracking the gesture within itself and finds it is to move into
the neighborhood of an adjacent PPP, it sends an anticipatory message
to notify the neighboring PPP about a gesture coming its way. This
message contains all the action data necessary to handle the continu-
ation of a gesture: position, PPP ID, gesture ID, gesture type, speed,
acceleration and timestamp. Using the position, speed and timestamp,
the receiving PPP can match it against future detected actions by as-
suming that the gesture continues at a similar speed and acceleration.
In a later instant in time, when the adjacent PPP detects an action in the
neighborhood of the location predicted by an anticipatory action mes-
sage, it identifies the action as part of a continuing gesture and hence
copies its gesture-specific attributes from this anticipation message.
Following this, the new PPP starts tracking and managing the actions
of this gesture. However, note that between a prediction and actual
detection of the action in the adjacent PPP, multiple actions can occur.
Hence, the adjacent PPP receives multiple anticipation messages from
the same neighbor. When processing them, it only needs to consider
the most recent anticipatory message. Also, if a PPP receives anticipa-
tion messages from multiple PPPs due to multiple gestures, they can
be easily identified by their PPP ID attribute. The end of a gesture is
detected by a timeout mechanism. If the difference in timestamp of
two consecutive actions is beyond a certain threshold, the new action
is assumed to be the commencement of a new gesture.

Flow Chart: The entire gesture management module is summa-
rized in the flowchart in Figure 8. Each PPP starts with detecting an
action and deciding to pick up its management using the shared action
management protocol. If the gesture continues within itself, the PPP
tracks it. If the gesture moves close to an adjacent PPP, it communi-
cates it to the relevant neighbor via the anticipatory action message.
And if it receives an anticipatory action message, it picks up the ges-
ture tracking and handling from an adjacent PPP.

Scaling to Different Interaction Modalities: To use different in-
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Fig. 8. The Distributed Gesture Management Protocol: The gesture
management depends on the 2D application only on interpretation of
recognized gestures and hence is mostly an application independent
module. The cyan boxes represent the application specific modules and
the purple ones represent the modules involved in communications.

Fig. 9. The Distributed Reaction Management Protocol. The cyan boxes
represent the application specific modules and the purple boxes repre-
sent modules that are involved in communications.

teraction modalities, only the cyan box in Figure 8 that recognizes the
actions need to change. Instead of gesture based action, this module
has to now detect different kinds of actions.

3.2.2 Distributed Reaction Management

The distributed reaction mechanism involves processing (consuming)
the actions in the queue generated by the distributed gesture manager
by reacting with a particular event. Note that the set of PPPs that need
to react to a gesture may be larger than the set of PPPs across which
the gesture spans. For example, in a map visualization application
one can move the map with a sweeping gesture that spans just a few
PPPs, but the map across all PPPs must move in response. Further,
the event may be associated with creation, movement, or deletion of
data across PPPs. Hence, the reaction manager is also responsible for
taking steps to assure data consistency across the PPPs. Finally, the
job of the event manager also involves informing the PPPs that will
be affected by the event so that reaction managers of the PPPs that
did not see any gestures can receive events they need to perform from
other PPPs. The function of the reaction manager is summarized as
in Figure 9. It dequeues an action from the queue of actions produced
by the gesture manager and creates and processes the corresponding
event. Following that, it checks if it has received any events from
other PPPs and processes them. The details of the events processing is
described later in this section (Figure 10).

Event Data Type: Figure 5 shows the event data structure used
by the reaction manager. Processing every action invokes an event.
Hence, just as every gesture in the gesture manager is associated with a
set of actions, every gesture in the reaction manager is associated with
a set of events. The event attributes constitute of a gesture ID, a times-
tamp indicating when the event was invoked, and the PPP ID of where
it was invoked. These are all application independent attributes of an

YesENTER

T

No

E
X

IT

Fig. 10. Details of process events routine in the Reaction Manager in
Figure 9. The cyan boxes represent the application specific modules
and the purple ones represent modules involved in communications.

event. The application specific attributes of the event are its type and
parameters. For example, the event type may be something as simple
as move or rotate or as complex as open a window or resize a window.
The event parameters can be the horizontal or vertical dimensions for
a move, an angle for rotation and so on. Event parameters also con-
tain a pointer to data which the event has created or is handling. For
example, for opening a window, the data is the window (that can be
defined by a top-left and bottom-right corner in global coordinates of
the display). Finally, the event also maintains a list of PPPs it affects
(e.g. for a global event like panning the imagery across the display,
this will be the set of all PPPs in the display).

Event and Action History: As soon as the reaction manager gets
an action from the queue, it creates an event. The reaction manager de-
ciphers this predefined application specific event type associated with
the action. The reaction manager can also receive events which it has
to execute from other PPPs. For processing the events, the reaction
manager maintains an event history and event pointer for every gesture
it encounters. The event history is the array of all the events invoked by
the actions in a gesture, sorted by their creation timestamp. The event
pointer marks an index in the event history after which the events have
still not been executed. This event history is instrumental in perform-
ing the events associated with a gesture in the same order in all the
affected PPPs. As detailed later, the PPP may sometimes encounter an
event out-of-order after it has executed some of the subsequent events.
In such scenarios, the event history will be used to trigger an event
’roll back’ procedure. This action history can be as large as the array
of all actions comprising a gesture or as small as the previous action
in the same gesture. The size of the action history depends entirely
on the events that the application needs to perform. Its purpose is to
enable the generation of different events depending on a sequence of
actions, like detecting hand-drawn letters.

Event Processing: In order to process the event (Figure 10), the
reaction manager first checks if the action belongs to a gesture that the
PPP has not seen before. This indicates a new gesture and the reaction
manager creates a new action history, an event history (each of them
containing one of the two data types in Figure 5) and initializes the
event pointer to the beginning of the event history. Next, the reaction
manager computes the event attributes of this new event associated
with this gesture. Note that for some events, like opening a window
by drawing a stroke from the top left to the bottom right corner of the
window, it may not be possible to find the list of all the affected PPPs
with the first action of the gesture. In this case, the PPPs will update
the data attributes in a shared manner and inform the relevant PPPs as
the gesture proceeds across the different PPPs. This would also mean
updating the event history, action history and the event pointer in an
appropriate manner. Finally, if some new data has been written, the
PPP will also commit this change to the data server so that when other
PPPs request the part of the data at a future time, they can see the up-
dated data. Note that since multiple PPPs are accessing and writing
data from and to a data server we assume all the different mechanisms
are in place to assure consistency in a distributed data management
application. Hence, our interaction paradigm is agnostic to the kind
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of data server being used, either centralized or distributed. Following
this the reaction manager proceeds to execute the event. Executing the
event involves performing the function associated with the event (mov-
ing the imagery or showing a new window and so on) and advancing
the event pointer in the event history. Then it sends a message with
the event data structure to all the PPPs currently in the list of affected
PPPs that should perform a consistent event (e.g. moving the image
by an equal amount).

Race Conditions: Finally, there may be a situation when an action
is being processed by the reaction manager while an event related to
a prior action in the same gesture is waiting in the message buffer.
Hence, when the PPP gets to process the event message, it arrives out-
of-order with respect to the other events in the event history for the
particular gesture. Now, for certain events this may not be important
since the attributes may be changed in such a manner by the subse-
quent events that it is not inconsistent with respect to this PPP. But, if
this reveals a data inconsistency, then we need to execute an event ’roll
back’ procedure. In the ’roll back’ procedure, we undo the effects of
all the events in the event history that have a larger timestamp than the
timestamp of the received event and reverse the event pointer appropri-
ately to reflect this. Then the received event is inserted in the event his-
tory at the position of the reversed event pointer and executed. Finally,
all the subsequent events are executed again and the event pointer is
advanced accordingly. If there is more than one gesture affecting the
same data in a manner that can cause data inconsistency, all the events
with a bigger timestamp in the multiple gestures will have to be rolled
back in the same manner – undone in a reverse timestamp order and
executed again in the timestamp order. Old events can be removed
from the event history when newer packets have been received from
all the PPPs (TCP based communication ensure delivery in order) or
when the event is older than the connection timeout time. Though the
case of out-of-order event does not occur very often, this ’roll back’
operation is critical to ensures that the final logical order of event exe-
cution is consistent across the PPPs and hence the data. One example
of the occurrence of this is when a gesture is right on the division be-
tween PPPs and small registration errors result in both PPPs handling
the gesture. In this case, the gesture will be treated as rapidly going
from one PPP to another. The messages will be received out of order
but will be correctly reordered by the ’roll back’ procedure. Since our
registration is very accurate, this does not produce perceivable effects
in the application. Since this procedure modifies actual data, its ef-
fects can be sometimes perceived by the users. For example, in the
graffiti application described below and shown in the accompanying
video, when crossing the border between PPPs a line will sometimes
be drawn for a split second in the wrong order (as going back and forth
between PPPs) before quickly correcting itself. This will, however,
happen rarely and be quick enough to not be a nuisance.

Scaling to Different Applications: Note that only a few modules
of the reaction manager are application specific (highlighted in cyan
boxes in flowcharts in Figure 9 and Figure 10). The design of the
event attributes and types depends on the application and hence so does
their assignment during event creation. Further, the way events are
executed is also application specific. The rest of the reaction manager
is common for all kinds of 2D applications and is hence application
independent. The application specific modules for our test applications
are explained in detail in Section 3.4.

3.3 Implementation

The distributed interaction framework has been implemented using
Java SE 1.6. When the framework starts running, TCP connections are
established between all the PPPs. Each PPP either waits for the con-
nection or it establishes it depending on the relation between each pair
of PPP IDs. The applications have been written using the JOGL 1.1.1
library for OpenGL. This allows us to perform the geometric and pho-
tometric registrations (explained in Section 4) easily. But any library
that allows linear transformations and alpha masking would work.

The camera image processing and recognition is performed in Mat-
lab. For prototyping, Matlab is invoked to run the code, but for pur-
poses requiring a higher performance, native code should be used. For

Table 1. This table represents the network usage in amount of packets in
bytes per second (and also for a possible binary protocol) for two cases:
an application with a localized reaction (graffiti) and an application with
a global reaction (map).

App Packets/s ASCII bytes/s Binary bytes/s
Graffiti 68.5 90 30
Map 26 23 8

the hand-based interaction, we use our home-grown simple Matlab-
based software that detects the hand, computes its location, size and
orientation, and determines its type by matching it to an existing hand
posture library. However any existing 2D gesture recognition software
can be used [38] for this purpose. For the laser-based interaction, a
simple image thresholding detects the bright laser spot.

3.4 Results

We have prototyped four different 2D collaborative applications using
this distributed interaction paradigm on our 8′ ×6′ display wall made
of a 3×3 array of nine projectors. The applications are (a) graffiti; (b)
map visualization; (c) emergency management; and (d) virtual bulletin
board. The graffiti application allows several users to draw at the same
time with their hands. Touching the screen with two fingers brings
up a palette, and the user can choose a color by tapping on it. That
creates a temporary color square that the user can use to start drawing
lines with that color. This window can be closed tapping on it again.
The map visualization allows individual working windows (that can
be moved or resized) for several users to work on different parts of
the map simultaneously. The background map and the working win-
dows can be panned and zoomed independently and the map type can
be changed. The emergency management application demonstrates a
possible interface that could be used to coordinate response teams in
which several emergency management officials can coordinate the first
responder efforts in different parts of the affected region. Markers can
be added to indicate a danger area, two associated numbers indicating
present and dispatched personnel can be updated, and routes can be
drawn and erased to indicate the safest/fastest routes to reach or avoid
danger areas. The virtual bulletin board allows the users to hang dig-
ital documents and manipulate them. Bulletins can be moved around,
resized, highlighted and removed.

We have tested multi-user interaction successfully with up to five
simultaneous users, but a display with more area should easily fit a
much larger number of users. To demonstrate the ease of interaction
we used children ranging from ages 7 to 13 years old to draw on the
display in a collaborative manner. It took them only a few minutes
to get comfortable interacting with the display and its inherent scala-
bility allowed multiple children to simultaneously draw on the screen
without introducing additional latency. To demonstrate the scalabil-
ity of our paradigm to different interaction modalities, we also show
multi-user interaction with blue and green laser pointers with our ex-
isting interactive applications. We have shown a few static images of
our applications in action in Figure 1, but we strongly encourage the
readers to check the video for an accurate impression of functionality
and performance.

Network usage has been measured during interaction for the cases
of a gesture affecting only a few of the PPPs and for a gesture affecting
all of them (Table 1). These values represent the traffic for an effec-
tive recognition refresh rate of 8.12 times per second, but no time has
been spent optimizing the protocol for network usage. We have also
included calculation of how much traffic there would be if a binary
protocol were to be implemented.

Note that we have not explicitly assured synchronization of event
execution across multiple PPPs. However, in practice we found the la-
tency of execution of the same event across multiple PPPs to be small,
less than 15ms. The main contributor for delay was gesture recog-
nition since we used MATLAB for quick prototyping. Though this
did not seem to bother our users – even the over-active children – we
believe this delay should be greatly reduced using native code.
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Fig. 11. Left: A standard version 1 QR Code. Right: The same QR Code
augmented with our Gaussian blobs used in the registration phase.

The application specific modules of the reaction manager, though
non-trivial, are relatively simple to design. Adapting an existing ap-
plication to our distributed interaction system took an an average grad-
uate student one to two days. To demonstrate this, we next describe
how we designed the application specific modules for the few applica-
tions we have prototyped in our lab.

To fill the Create Event module, the applications have to be able to
decide what kind of event should be generated and define the attributes
for each kind of event. For example, the Map application defines an
event to pan over the map (containing the moved distance), another
event to create a personal working area (containing the position and
size of the created area), etc. and the Graffiti application defines an
event to draw a line (containing the color and width of the line and the
position of the next point), another one to open a color palette (contain-
ing the position where it should be opened), etc. In the case the same
event can be applied to different objects, those attributes will contain a
reference to the affected data. For example, when dragging a bulletin
in the Virtual Bulletin Board application, the generated events will
contain a reference number to the affected bulletin that is consistent
among all the PPPs. In the Execute Events module, the applications
apply the event depending on its type and attributes. For example, the
Virtual Bulletin Board application loads a new bulletin from the data
server and displays it when the event to load a bulletin is executed and
the Emergency Management application displays a warning sign in the
position contained in the event generated when the user does a gesture
to mark a danger area.

For ’roll back’, the applications have to implement a way to undo
each of the events to ensure that the application returns to the exact
same state as before the execution of the event. When no data is in-
volved, this is simple and can be achieved by performing operations
in the reverse order. For example, to roll back an event in the Bulletin
Board application that highlighted a bulletin, the application just has
to de-highlight it. However, if data is involved, we have to keep the
original data before modification, since it may be impossible to get it
from the modified data. Hence, all data needs to persist for a while
even after it is removed from the application. The clearest example
of this is when the event execution removes an object from the display
and it has to be restored when undoing it (e.g., when closing a working
area in the Map application).

4 DISTRIBUTED REGISTRATION IMPROVEMENTS

In this section, we describe our new distributed registration technique
in detail. We discuss related work in Section 4.1 followed by the inno-
vations of our method in Section 4.2 and 4.3. Finally, we discuss the
implementation details and results in Section 4.4.

4.1 Related Work

[3] presents a distributed registration method when using a network
of m× n PPPs on a planar display. The method has three steps. (a)
First, in a neighbor detection step a pattern made of 4 disjoint grids of
5×5 blobs (Figure 12) is used to detect the neighbors of each PPP via
their cameras. (b) Next, in the configuration identification step binary
coded information is encoded in these grids of blobs and propagated in
multiple rounds via communication using the cameras to decipher the
total number of PPPs in the display, their configuration (total number
of rows and columns) and the coordinates of the PPP in this display. (c)
Finally, in the registration step, the pattern in the neighbor discovery

step is used to register the display using a distributed homography tree
technique (See video for the method in action).

This method has several shortcomings. First, the configuration
identification step requires O(ln(mn)) rounds. In each round, each
PPP projects its own coded pattern to communicate its belief about the
display configuration (total rows and columns in the display and its
own 2D coordinates in it), sees the projected coded pattern of the adja-
cent PPPs and changes its belief based on some rules. This continues
iteratively across the PPPs until all converge to the correct configura-
tion. However, multiple rounds of such camera based communication
need considerable image processing and hence impacts performance.
This also limits the scalability of the method across a larger number of
PPPs. Finally, since colored patterns are used, the image processing is
not robust when using commodity cameras with lower color fidelity.

Second, the homography tree technique [8] is inherently a central-
ized technique. A homography graph considers each projector as a
node and places an edge between adjacent projectors i and j. Each
of these edges is associated with the local homography between the
adjacent projectors Hi→ j recovered using the cameras. Hi→ j is the
transformation that takes pixels in the coordinate system of projector
i to that of projector j. The homography tree technique identifies a
projector PR as the reference and finds for each projector Pi, a path to
PR. This results in a spanning tree in the homography graph, called
homography tree, whose root is the reference projector (Figure 14).
The homography that relates the projector Pi to PR is given by the con-
catenation (multiplication) of the local homographies on the path from
Pi to PR in the homography tree.

The homography graph should ideally have some invariants: (a)
the concatenation of homographies across a cycle in the homogra-
phy graph should be identity; (b) Hi→ j should be the inverse of Hj→i.
But this is seldom the case due to several estimation errors and small
projector non-linearities resulting in significant misregistrations, espe-
cially along the edges which are not part of the homography tree. To
alleviate this problem, the homography tree is usually followed by a
global alignment method via non-linear optimization techniques like
bundle adjustments [8]. Since any global optimization technique is
hard to achieve in a distributed manner, [3] avoids this step when de-
signing a distributed homography tree method to achieve the registra-
tion. In this distributed variant, the tree is formed in a distributed man-
ner by communicating the homography to the reference to neighbors
who choose one of the many communicated homographies and multi-
ply it with the local homography to the neighbor to find a PPP’s own
homography to the reference. The process starts from the reference
whose homography to itself is identity.

Comparison with our work: In our new registration technique, we
introduce the following innovations. We use a single pattern based on
specially augmented QR Codes to simultaneously achieve neighbor
detection, configuration identification and registration. This allows
us to eliminate the O(ln(mn)) rounds of camera based communica-
tion in the configuration identification round in [3] and achieve this in
O(1) time. Also, this significantly reduces visual communication iter-
ations and image processing time thus improving performance. This
faster convergence is possible by supplementing the single camera-
based communication with network based communications. Hence,
as opposed to a multi-second registration of [3], our registration is al-
most instantaneous. However, the network overhead is still at most
the same as [3]. Finally, since we use monochrome patterns instead of
color patterns as in [3], our image processing is much more robust and
allows inexpensive cameras with much lower color fidelity.

Second, we propose a new radially cascading registration method
(Section 4.3) that is amenable to a distributed implementation and
achieves much superior registration. This method can also be used for
any centralized tiled display and performs better than the homography
based global alignment technique proposed by [26]. The homography
based global alignment seeks to find a global homography Gi for each
projector Pi constrained by the fact that when considering any other
projector Pj, i �= j, G jHi→ j should provide Gi. Hence Gi = G jHi→ j.
These provide a set of over-determined linear equations which when
solved provides a transformation Gi for each projector that aligns all
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Fig. 12. We show the patterns for our work (left) compared against [3]
(right). Top: The pattern projected by each PPP. Middle: The image
seen by a PPP when all neighbors and itself are projecting their pat-
terns. Bottom: The image of a 3× 3 array of nine projectors projecting
their patterns.

projectors with a common global coordinate system. This method
tends to distribute the errors in the local homography across the en-
tire display and hence, cannot remove pixel misregistration entirely.
Unlike the homography tree where the misregistrations are concen-
trated at a few edges not included in the tree, the global alignment
technique has small errors across all the overlap regions. However, the
worst misregistration is significantly reduced from the homography
tree technique. Our radially cascading registration method provides
much superior results when compared with this global alignment tech-
nique and the distributed homography tree technique (Figure 14). The
slight global distortion visible in the results of our method is due to
small non-linearities in our commodity cameras.

4.2 Minimizing Camera Based Communication

QR (Quick Response) code is a 2D barcode which can embed a certain
number of bits of data. The number of bits that can be encoded in
the QR Code changes with its size. We encode in a QR Code the
IP address and the port of the PPP, the location of the QR Code (2D
coordinates of its top left corner in the projector coordinate system),
and the size of the QR Code. The QR Code has a surrounding large
’quiet zone’. We augment the QR Code with some blobs embedded
in this quiet zone which are used to detect correspondences across the
projectors and the cameras for registration purposes (Figure 11. The
blobs are embedded in a manner so that the quiet zone is retained after
the binarization of the QR Code in the decoding phase. Hence, we can
still use standard QR Code decoders without any change.

The pattern projected by each PPP as they are turned ON has four
of these augmented QR Codes placed in an offset manner around the
center such that each of the left, right, top and bottom neighbors can
see at least one of these completely. The placement of the pattern and
the overlaps required to assure no conflicts with neighboring projector
are decided as in [3]. Since the camera of each PPP sees more than
their own display, they see the neighbors’ patterns along with their
own. Figure 12 shows the pattern projected by each PPP, the image
seen by each PPP and the display when all PPPs are projecting their
own QR based patterns.

Each PPP detects the patterns from its neighbors to find out which

Fig. 13. Explanation of addition of PPPs to the pool of registered PPP for
the radially cascading geometric registration method. Left: The middle
PPP is the reference. Right: The top-left PPP is the reference.

of the left, right, bottom and top neighbors exist and creates the local
connectivity graph of itself with its neighbors. Next, they decode this
pattern to find out the exact IP-address of each of their neighbors. Fi-
nally they broadcast the location of each of their neighbors (left, right,
top or bottom) along with the associated IP-address to all the PPPs in a
single UDP packet. When each PPP receives this information, it aug-
ments its local connectivity graph using this information. Thus, each
PPP now builds the connectivity graph for the entire display and as-
sociates a unique IP address with each node. Thus, it knows the total
number of projectors in the display and their configuration. Follow-
ing this, each node performs the same row-major naming convention
to detect its own coordinates in the display. Unlike [3] which builds
the connectivity over multiple rounds of camera based communication
and broadcasts the IP addresses only following configuration identifi-
cation, we achieve the same result with the same amount of network
communication but with no computation overhead.

4.3 Radially Cascading Geometric Registration

Once the QR Codes are deciphered, each PPP i performs a blob de-
tection in the quiet zone of the codes to decipher all the blobs. These
blobs provide correspondences between the PPP’s own projector and
camera and hence allows it to recover the self-homography between
its projector and camera. Next it detects the homographies with its ad-
jacent projector j using the blobs detected in its QR Codes. Finally, it
concatenates its self-homography with the homography of its camera
with the adjacent projector to create the local homography Hi→ j.

The radially cascading geometric registration method starts from a
reference projector which is considered as the only registered PPP ini-
tially. In each subsequent step S, PPPs with Manhattan distance S from
the reference join the set of registered PPPs by aligning themselves
with the PPPs who joined the registered display in step S − 1. The
process stops when all the projectors belong to the set of registered
projectors. Figure 13 shows the PPPs that join the set of registered
PPPs for different steps S for two reference projectors in the display,
the center one and the top left one respectively. Note that for a rectan-
gular array of PPPs, all the PPPs that join the set of registered PPPs in
step S share at most two boundaries with the set of registered PPPs.

In step S, all the PPPs that joined the set of registered PPPs in step
S− 1 send their homography with respect to the reference PPP to all
their neighbors whose Manhattan distance is S from the reference PPP.
Thus, the PPP at a Manhattan distance S recieves a homography from
all the registered PPPs with Manhattan distance S − 1 that share a
boundary with it. Let us assume a PPP i in step S is receiving two
such homographies from two neighbors j and k, denoted by G j and
Gk respectively. This PPP first converts the correspondences in the
overlap with j to the coordinate system of the reference projector us-
ing G j. Similarly, it converts the correspondences in the overlap with k
using Gk. This gives PPP i a set of correspondences with the reference
PPP via multiple possible paths through the registered projectors. PPP
i then computes its own homography with the reference, Gi, using all
these correspondences. This method can be summarized by a SPMD
algorithm running on each PPP i as follows.

if center PPP {
Send I to PPPs with d = 1;}

else {
d = Manhattan distance to center;
forall neighbors j with dist=d-1 {
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Fig. 14. Here we compare our method (top) with the homography tree (center) and the global optimization (bottom) technique on a 3×3 array of nine
projectors for two different images on left and right. The homography tree (center) is shown superimposed in white – note that the misregistrations
are mostly along the links which are not used in the tree. Please zoom in to see details.

Receive G j from j;
Multiply all correspondences in overlap with j using G j; }

Estimate Gi using all correspondences with all neighbors;
Send Gi to all neighbors j with dist=d+1; }

The total number of steps required for this algorithm to register
will be the maximum Manhattan distance of any PPP from the ref-
erence. For a display of m× n PPPs, if the top left PPP is chosen
as the reference, the PPP with the maximum Manhattan distance of
(m−1)+(n−1) from the reference is the bottom right. If the central

PPP is chosen as the reference, the number of steps will be m−1
2 + n−1

2 .
Figure 14 compares our superior registration with that achieved by the
homography tree and the global alignment technique.

4.4 Implementation and Practical Improvements

We demonstrate our distributed calibration system on a grid of nine
PPPs in a 3× 3 array. Since this method does not rely on color pat-
terns, each PPP is equipped with a monochrome VGA webcam. Due
to noisy and low-resolution cameras we use the lowest resolution QR
Code (203× 203 pixels embedding a 29× 29 grid) which can embed
at most 152 bits of information. We embed a 32-bit IP address, 16-bit
port, the top left corner of the code in the projector coordinate repre-
sented as two 16-bit numbers, and the 8-bit size of the code (using only
88 of the 152 bits). We embed 24 Gaussian blobs in the quiet zones
of the QR Codes. Gaussian blobs allow us to robustly determine blob
positions with subpixel accuracy and improve the quality of homog-
raphy estimation. We use the ZBar barcode library to quickly decode
QR Codes seen by our cameras as well as provide a rough estimate of
the QR Code corners.

Since each PPP independently builds the complete graph of the dis-
play, our radially cascading geometric registration technique can be
performed either via message passing (Section 4.3) or independently
on each PPP after it forms the adjacency graph for the entire display
reducing the network overhead significantly. Hence, we include the
PPP’s local homographies with all its neighbors in the message broad-
cast during the configuration identification stage. Each PPP i sees only
one of the four QR Codes for its neighbor j completely. The four cor-
ners of the QR Code are used to estimate a coarse local homography,
which is used to initialize the blob detector. The detected blob posi-
tions in this QR Code are then used to produce a more accurate local

homography estimate. For each projector i, we find the two homo-
graphies with each of its neighboring PPP j, Hi

i→ j and Hi
j→i, where

the superscript denotes the PPP which computes these homographies.

Note that the same homographies can be computed by j as well, H
j

i→ j

and H
j
j→i respectively. Ideally, Hi

i→ j = H
j

i→ j. But, due to the distri-

bution of the blobs only around the QR Codes instead of the entire
overlap, especially in the face of mild non-linearities in either the pro-
jector or camera, this results in a situation where there can be a slight
deviation from this constraint. So, we design a method to compute a
more accurate homography Hi→ j from i to j, as follows. We generate
a set of points uniformly over the overlap of i with j and find their
corresponding points in j using Hi

i→ j. Similarly, we generate a set of

points uniformly over the overlap of j with i and find their correspond-

ing points in i using H
j

i→ j. Then we use this combined set of corre-

spondences to generate a more robust estimate of Hi→ j using a linear
least squares technique. In our system this computation of the radially
cascading registration on each PPP did not exceed the network latency
and time to sequentially compute and propagate this information.

To achieve photometric seamlessness, we use the recovered homog-
raphy of each PPP i with its neighbor j to detect the exact shape of the
overlap. Finally, each PPP independently applies a blending function
in each of its overlap.

5 CONCLUSION

In conclusion, we present the first distributed interaction paradigm for
large rear projected display walls. We demonstrate the scalability of
our method to multiple displays, users, applications and interaction
modalities by showing a working prototype of multiple 2D applica-
tions using both gestures and laser based interaction modality. We
also propose a new deterministic distributed registration technique that
is more accurate and efficient than prior methods, and can be easily
adopted for a centralized system also.

In the future we would like to extend our work for front projection
systems where occlusion is an issue. We believe that our paradigm
can extend to 3D applications, however we would like to explore the
different issues in detail. We would also explore designing distributed
versions of more rigorous photometric calibration methods [22, 28].
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