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ABSTRACT

Cellular biology deals with studying the behavio r of cells. Current
time-lapse imaging microscopes help us capture the progress of ex-
periments at intervals that allow for understanding of the dynamic
and kinematic behavior of the cells. On the other hand, these de-
vices generate such massive amounts of data (250GB of data per
experiment) that manual sieving of data to identify interesting pat-
terns becomes virtually impossible. In this paper we propose an
end-to-end system to analyze time-lapse images of the cultures of
human neural stem cells (h(NSC), that includes an image processing
system to analyze the images to extract all the relevant geometric
and statistical features within and between images, a database man-
agement system to manage and handle queries on the data, a visual
analytic system to navigate through the data, and a visual query sys-
tem to explore different relationships and correlations between the
parameters. In each stage of the pipeline we make novel algorith-
mic and conceptual contributions, and the entire system design is
motivated by many different yet unanswered exploratory questions
pursued by our neurobiologist collaborators. With a few examples
we show how such abstract biological queries can be analyzed and
answered by our system.

Keywords: Neuroscience, stem cell segmentation, tracking, cell
imaging, data management, visual analytics, navigation, explo-
ration, query processing.

1 INTRODUCTION

Cellular biological experiments typically include culturing differ-
ent types of cells in a controlled environment. Observation of such
cultures includes observing the life processes of the cells for ex-
pected and unexpected developments among the cells. Earlier, im-
ages of these cultures were taken at distant time intervals to un-
derstand the start and end states of the experiment. Only a few
characteristics like cell proliferation can be understood from these
images. But experiments such as those concerning drug screening
involve altering the conditions of the cultures to affect changes in
dynamic responses of the cells. These responses of the cell can
include metabolism, motility (motion), mutation, migration, prolif-
eration rate and rate of apoptosis and other higher level details such
as abnormal protein aggregation and cell-cell interaction. In order
to observe these kinematic and dynamic properties of the cells, the
images have to be taken often during the entire course of the ex-
periment. Current confocal laser microscopes can take time-lapse
images of the culture at a pre-determined frequency to enable such
observations of dynamic responses. But, as a result, the amount
of data produced by these devices is so massive (approximately
250GB of image and sensor data per experiment) that it is virtu-
ally impossible to manually sift through the data, track many cells,
compute statistical quantities like area, speed etc., find conditions
when various events happen, or identify patterns and correlations
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among patterns. Such information is used by neurobiologists to an-
swer questions like how many cells undergo mitosis during a period
of time; and to test hypothesis like whether the cell’s metabolism
decreases during division. Hence automation in terms of data pro-
cessing, data management, visual interaction for navigating through
the data, and querying the system for data exploration, are abso-
lutely unavoidable for scientists to quickly frame and test their new
hypotheses on various cellular behaviors. In this paper, we pro-
pose such an enabling system that opens up new frontiers for neu-
roscience research.

1.1

We present an end-to-end system to automate different stages of
the data capturing, management and usage in the context of experi-
ments on human neural stem cells (h(NSC). Following are the main
contributions of the paper:

We present novel algorithms for image processing for cell iden-
tification, segmentation, and tracking. Our algorithm can also ro-
bustly find the boundary of the cells that enables accurate computa-
tion of other statistical parameters like area of the cell.

We propose a hybrid data representation, storage, and manage-
ment technique that can handle statistical data, image data and se-
mantic data. Our data management technique is specifically de-
signed to provide fast query processing, efficient data integration
for visualization, navigation, and exploration.

We provide data navigation techniques that take semantics of the
data into account and enable the users with contextual responses
and navigation. The visualization and navigation techniques in-
volve the user in a tight feedback loop using context menus, tool-
tips and hyperlinked charts.

We introduce a new querying methodology that is designed
based on the objects and attributes that are used in our application,
and use set operations to explore patterns and correlations in the
data.

In the course of the above process, we take the data through dif-
ferent levels of semantic abstraction for data visualization, correla-
tion and hypothesis formulation.

Main Contributions

1.2

Our imaging system uses Olympus VivaView Incubator Fluores-
cent Microscope. This system allows time-lapse imaging of cell
cultures. It also captures images at different focal depths on the
culture dish by illuminating the dish with four different laser wave-
lengths.

The cells in the images are human neural stem cells cultured in
different media and substrates. The cells are 10-20um in size on
an average (excluding the branches). The images capture an area of
433.5um x 330um. The cells are marked with fluorescent proteins
so that when an appropriate laser is used during imaging, only those
cells are visible in the images, which would help in image process-
ing for detecting and tracking these cells. In our experiments, we
use Green Fluorescence Protein (GFP) that exhibits fluorescence
when irradiated with light of wavelength 488nm. A typical exper-
iment would have images taken at 2-10 minutes interval, and the
experiment can run for one to two weeks. Experimental conditions

Images and the Imaging System
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can change in the middle - new media can be added, the CO; level
or temperature can be changed, etc.

The captured images are 16-bit grayscale images of intensity val-
ues ranging from O to 4096 (12 bits of actual data). The images are
of dimensions 1024 x 1344 pixels. A typical image is shown in 1 in
Figure 2.

2 RELATED WORK
2.1 Related work in Segmentation and Tracking

The problem of cell segmentation has been worked upon for many
years, and a large number of methods and techniques have been pro-
posed. This is largely because cells are dynamic entities that vary
widely in appearance and exhibit varied types of behavior, therefore
methods developed for one type of cell are not applicable to other
cell types.

A common approach for segmentation and tracking is using edge
detection and morphological operators. Various combinations of
these techniques are used in [1] and [15], but for neural stem cells
these methods do not always produce accurate results due to pres-
ence of edges with very low contrast.

Some techniques use the level-set segmentation method. This
method used by [16] with success on leukocytes, uses a zero-set of
implicit energy functional, that traces a smooth boundary around
cells. Another popular approach to cell segmentation is the Active
Contour Model, proposed in [7]. These models take a combination
of cell features such as cell boundary, internal pixel values etc. and
minimize energy to ‘wrap’ a contour around the cell. Due to lack
of sharp contrast at boundaries and non-uniform shapes of neural
stem cells, these methods do not produce satisfactory results with
our images.

Model based segmentation methods are an important class of
segmentation techniques that identify cells in images and image se-
quences based on certain well defined assumptions about spatial or
temporal attributes of cells and their motion. Methods such as [19]
use size and shape based contours to identify cells. Methods such
as the one proposed in [20] use motion patterns on leukocytes in
images of blood streams to identify cells.

The watershed approach is a commonly used segmentation tech-
nique and is the one we use as a step in our segmentation procedure.
Our method is largely inspired from [23] where the authors pro-
posed a method of segmentation based on Ultimate Eroded Point.
The method uses two erosion structures one for coarse and other
for fine erosion successively. This method makes two assumptions:
firstly the shape of structure for erosion captures the shape of the
cells, and secondly, the topography of the cell image (or the height
field) needs to be smooth enough for erosion to a single point to
produce a seed.

Methods that track cells by shape matching predominantly use
shape descriptors (proposed in [2]). They represent shapes of cells
as a number of binned histograms for each point on the outline of
the shape and perform graph matching. This method is computa-
tionally expensive and also not suitable for highly concave shapes.

Our segmentation method is largely based on watershed algo-
rithm. The problem with watershed generally comes in the form
of under and over segmentation of a region, which is to be avoided
if statistically correct segmentation is to be achieved. For this we
used the technique of seed-point similar to the one suggested in
[23]. We produce the seed points using intensity maxima of an en-
hanced image while avoiding false detection, rather than UEPs as
in that paper because cells in our image lack a shape to derive the
eroding structure elements from. The method of segmentation is
described more fully in Section 4.1.

2.2 Related Work in Visual Analytics

Visual navigation plays an important role as the first step in data
exploration and knowledge creation from large multi-dimensional

data. Navigation refers to the process of traversal of the user view
from one aspect or representation of data to another. Generally, the
data collected from biological experiments is multi-modal: it con-
sists of image data as collected from microscopes, textual data from
annotation and numerical data from various measurements and cal-
culations. Navigation of the data, thus helps the user correlate such
modal data [5]. In general Visual Analytics is the approach of com-
bining visualization, human factors and data analysis [8].

An important aspect of any visualization and navigation system
is the existence of the human element in the exploratory process.
As stated in [9], the importance of data navigation and exploration
comes from the vast repertoire of data created in short period of
time by scientific experiments, using large computational power
that is at our disposal. The author further states that the raison
d‘Btre of such systems is not to find correlations in data (as [4]
does) but to represent the data in a fashion that the existence of
correlations becomes apparent to the human user.

Applying visual data navigation and exploration techniques to
biological data has seen interesting work such as [10]. The authors
developed MassVis, a system to analyze mass spectrometer data on
protein complexes. Another important contribution in the direction
of cell tracking visualization is [14], where the authors develop a
single cell tracking visualization scheme seeCell. A similar track-
ing visualization method for dendritic cells in stream of microscopy
images has been proposed in [22]. We propose a system that not
only tracks but also correlates the various attributes of the cell life
processes. To the best of our knowledge our system is the first to
have an end-to-end module that segments the cells, tracks their mo-
tion, identifies interesting events and represents the statistical and
semantic data visually.

The work done by [18] explores non-temporal data of breast can-
cer tumors. In this work, the raw data taken as input for the system
is in the form of MRI scans and other ‘raw’ visual data, and the
authors develop a system to extract the 3-Dimensional representa-
tion to present to user for exploration. Imaris [3], a commercially
available software, works with grayscale cell images to segment
and track cells. The segmentation is done via blob detection. The
4D data is analyzed by identifying 3D blobs that have sizes above a
user provided threshold. Tracking in Imaris is done by associating
cells in spatial neighborhood and by extent of overlap. ‘Trails of
cells’ are provided to the user, who then corrects the mismatch, in
contrast to our system, which performs matching based on generic
shapes.

Successful visual data navigation and exploration systems gen-
erally employ a series of operations as proposed in [21]. The
author describes that a visual representation system first gives an
overview, then allows for zooming into items of interest from such
an overview, filters out irrelevant details and then provides details of
the interesting items on demand. The author also expands the idea
into exploration of patterns by representing correlation of datasets
and maintaining history of actions (annotations) to extract patterns.
This technique for visual representation of data is very widely ac-
knowledged in literature as the mantra for a good representation of
multi-dimensional data.

Another important feature of a good Visual Analytic system is al-
lowing effective user queries. As far as user queries are concerned,
[5] provides a path querying system, where the user draws a desired
path and a hyperlabel, which displays information on the objects
found around the path. Our system on the other hand allows users
to click on individual cells or select multiple cells based on which
information pertaining to that cell or group of cells can be generated
via a context menu.

The method proposed by [10] provides users with the ability to
customize their queries by providing them with drop downs and
search boxes. In this case, the user has to manually pick what they
wish to view. In our system, we propose hyperlinked charts, where
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Figure 1. Block diagram of the system. Our system gets the time lapse images of live cellular biology experiments from the microscope. From
these images the segmentation and tracking module (in orange) extracts semantic and statistical information from these images. Such collected
and computed data is efficiently stored, managed and accessed by the data storage and access module (in light gray). The user is provided
with a set of effective visualization entities (in yellow) to pictorially see the data, while the navigation module (in purple) lets the user to visually
traverse through the hierarchy of data and the attributes. Finally we also propose a query system (in blue) that the user can use to query the

underlying database.

the user can just click on a plot to create a different image associated
with the chosen point on the plot. We also allow the capability of
drill-down plots, such that a new plot can be created in real-time
when the user chooses on a range in a plot he is currently viewing.

3 SYSTEM OVERVIEW

An overview of the system is shown in Figure 1. The visual data
from the microscope consists of raw images, void of any semantic
information. Thus, segmentation of images is required to identify
the parts of images that make up a cell and those that make up the
background. Segmentation is a process of grouping pixels across
boundaries of the cell as foreground and background. Similarly,
tracking groups such identified regions of cells across time. As the
images are time-lapse sequences of the snapshots of the state of
cells, associating cells over time is important.

The information generated thus is stored in the database as statis-
tical data related to cells, frames and experiments, and the semantic
information is stored in flat files. The data present in the relational
database, the image data and flat files are accessed by a central mod-
ule called the consolidator, which uses the wrapper modules to ac-
cess different types of data. Such a storage of hybrid data allows for
easy and quick access. We have described this data storage and ac-
cess system in Section 6. The consolidator also accesses image files
using the Image Wrapper module. The consolidator essentially acts
as an interface between the data storage and access module and the
navigation, visualization and query modules described below.

In visual analytic systems there exists a loop between visualiza-
tion and navigation which involves the user accessing and navigat-
ing the data through visual representations. This process iterated by
a domain expert helps in the discovery of knowledge via hypothesis
framing and validation. This tight-knit loop is shown in the visu-
alization and navigation module in Figure 1. These actions of the
user span a graph where the edges are formed by the actions for
navigation initiated by the user and the vertices are the visualiza-
tion entities. We describe this view for navigation and visualization
in Section 7.

The validation of hypothesis also involves the user querying the

system at a semantic level. In order to facilitate such an interaction
with the system in terms of higher level semantics, we develop a
query analysis subsystem depicted as such in the Figure 1. This
type of interaction with the system requires storage and access of
underlying data in a manner that can satisfy the requests for visual-
ization and semantic queries. This query system has been described
in detail in Section 8.

4 SEGMENTATION AND TRACKING

In this section we describe the process of segmenting and tracking
raw microscopy images to derive higher level semantic meaning
from the images. This involves marking pixels that form the cell
interior and the cell boundary (i.e. segmentation), matching cells
between frames (i.e. tracking) and detecting interesting events in
the cells. A detailed description of this process and how it differs
from existing methods of segmentation and tracking has been given
in our recently published work [13].

4.1 Segmentation

Segmentation is the process of dividing the image into cell regions
and background. We carry out the segmentation in two steps: ro-
bust cell center marking (identified by high brightness) and detec-
tion of the cell boundary (around the identified cell centers). The
output of the first step is used in the second step. Robustness of de-
tection of cell centers is an important criterion for determining the
quality of segmentation. In order to identify the center of the cell,
we first identify the regions that are certain to be cells with high
confidence by performing a contrast enhancement operation. This
gives a consistent high response within the core of cell and a low re-
sponse to regions outside. We use convolution with the Difference
of Gaussians (DoG) kernel as the contrast enhancement technique
(2 in Figure 2). Difference of Gaussians is applied by convolving
the original image with Gaussian kernels twice — once with large
sigma and again with small sigma, then subtract the result of the
latter from that of the former. This operation specifically, is invari-
ant to local intensity variations that are common within a cell. The
output of this operation is a bright region in the core of the cell. The
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Figure 2. Segmentation: Clockwise from Top-Left: 1. Original Im-
age, 2. Image after DoG contrast enhancement, 3. Cell centers and
cell regions (after some morphological operations), 4. Final image
after watershed.

boundaries of these bright regions are found by applying a few mor-
phological operators, like dilation, erosion and open operations, to
remove the effects of spurious intensity maximas, followed by edge
detection (3 in Figure 2). The weighted centroid of that region,
together with the intensity maxima gives the location of the cell.

With cell centers correctly identified, accurate cell boundaries
that encompass the whole cell, including the branches of the neu-
rons, need to be identified. We use the watershed segmentation al-
gorithm [17] to split regions into as many cells as there are maxima
points (cell centers). The Watershed algorithm considers the image
as a height-field and partitions the image into regions of watershed
— a partition refers to a region where, when water falls it flows to the
same basin. The original image is complemented so that the high in-
tensity cell centers become low intensity basins. A minima suppres-
sion operation is applied to remove noise, make the regions which
are not part of the cell as plateaus, and remove over-segmentation.
Then the watershed is applied to this image to partition it into mul-
tiple regions. The corresponding regions found which contain the
cells are matched against cell centers. Every region (a basin in the
watershed algorithm) which contains a cell center defines the entire
extent of that cell (4 in Figure 2). This segmentation enables com-
putation of cell parameters like the area of the cell, total florescent
protein (GFP) content, and other static parameters.

4.2 Tracking by Graph Matching

The goal of tracking is to match cells in one image to those in an-
other (Figure 3). We build a weighted graph with nodes as cells and
edges between cells from two different images. The edge weights
are computed as a function of different parameters including pixel
overlap between the cells when the images are overlaid one over the
other, difference in the cell area, difference in total brightness and
Euclidean distance between their centroids in the pixel space.
Given this weighted graph, the graph matching that matches
cells in adjacent frames is done using Hungarian Bipartite Match-
ing [12] which is enhanced to include dummy nodes that handle
one-to-many matching arising due to mitosis. In the event of the
mitosis only one of the daughter nodes is associated to the parent
node in the previous frame, while the other daughter cell is left un-
associated. The unassociated daughter cell will be very close to the
parent cell in ‘distance’ and ‘pixel-overlap’ attributes. Such situa-
tions characterize the event of mitosis (cell division). The event of
cell death is said to have occurred when the cell is possibly left
unassocaited (because its GFP content will have decayed below

threshold or it died and moved too fast as to avoid any associa-
tion). Thus tracking implicitly allows for detection of important
cell events. Tracking, in general, aids computation of further pa-
rameters like speed of the cell, and first order statistics.

4.3 Event Detection

The detection of interesting events that occur in the lifetime of a cell
is particularly useful to biologists who frame hypothesis on these
events. Questions like which substrate enhances cell division or
death can be answered by observing such events.

Cell Division or Mitosis is said to have occurred when a cell in an
image captured at time 7 is invariably mapped to two different cells
in the image at time ¢ + Az, and each of the new cells differ greatly
in area to the parent cell. Also, it can be noticed that the cell’s total
intensity just before mitosis equals the sum of cell intensities of the
daughter cells. This is true because the brightness of the cell is
proportional to GFP protein content of the cell, and when the cell
undergoes mitosis the protein content is divided among its daughter
cells.

Cell Death: When a cell suffers apoptosis in a culture, it loses
its branches and floats away in the medium. This floating is similar
to Brownian motion and has much higher velocity than the firmly
rooted live cells. Thus, when a cell dies, the cell tracking algorithm
usually returns no match. The best match will have a large distance
from the cell in previous image. Statistically, we term this event
as cell death. Thus, a cell death is also characterized by its swift
mobility — when its speed is far greater than the average speed of
the other cells.

4.4 Evaluation of results

We evaluated our system for its ability to segment images accu-
rately. As Figure 2 shows, the method clearly delineates the cells
(including their branch like structures) and our neurobiologist col-
laborators were satisfied with the quality of segmentation. On the
quantitative assessment side of our method for segmentation, com-
parison was made with the methods based on morphological op-
erations (as described in [1] and [15]). The low contrast in our
image were not apt for segmentation (Figure 4), and were under-
segmented. Similar results were found with MRF segmentation
method. We tested our method by counting cells manually and tab-
ulating them against the results found by the segmentation module.
The results are summarized in the following table (Table 1). We
can see that our module performs well across the image types (low,
medium and high density of cells in the image). However, increase
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Figure 3. Tracking: Clockwise from Top-Left : Cell at time 1, Cell at
time 15, Cell at time 25, Cell at time 46
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Figure 4. This gives the result of segmentation of our images using various techniques. The image on the left is result of segmentation
with morphological operations described in [1]. Image in the middle is the original image. The last image is MRF segmentation with manual

initialization

in density of cells cause some branches to overlap giving false pos-
itives in cell center identification, causing over-segmentation.

Density | Number Actual Automatic
of Im- | Number Segmen-
ages of cells tation

Result

High 10 35.83 36.16

Medium | 25 25 25.32

Low 10 5.5 5.5

Table 1. Segmentation results carried over different sets of images

The accuracy of tracking is directly affected by the temporal den-
sity of frames. Large time gaps between the snapshots generally lets
cells change more in the unrecorded time, and this low rate of sam-
pling of the state of cells causes the tracking to perform poorly. If
a cell A in a frame at time 7 is associated with cell B in frame at
time ¢ 4+ A¢, such an association is labelled a ‘mismatch’, and if a
cell at time ¢ goes unmatched to any cell at time ¢ + Az, we label it
as ‘missed’. Table 2 summarizes the results in tracking sub-system.

Cell’s trail length in | Total number of | Average missed

frames mismatched  cell | cells per frame
pairs

0-5 (Missed all, debris) | NA

5-10 None NA

10-15 None NA

15-20 4 1.25

20-25 7 1.75

25-30 6 1.2

30-50 39 1.95

Table 2. Tracking results: Time delay 20 min

5 SEMANTIC INTERPRETATION OF SPACE

Attaching semantic labels to syntactic data starts with classifying if
a pixel in the input raw image belongs to a cell or not through the
image segmentation process as described in the previous section.
Once the pixels are classified, they are labelled with an integer in-
dex denoting a specific cell. All pixels that have the same label
collectively represent a semantic cell. Using this semantic interpre-
tation, parameters like area of the cell, perimeter, total brightness
and other physical parameters of the cell that may have biological
meaning can be computed.

The second level of semantics comes from the time domain. A
cell can move between two consecutive images taken at two dif-
ferent time instances. All the pixels belonging to these two corre-
sponding cells, as identified by fracking, in these two frames are
given the same label. Using this semantic labelling through time,
parameters like speed of the cell, cell division (mitosis), cell death
(apostosis), rate of change of area and other first derivative statisti-
cal data that have biological meaning can be computed.

In other words, images represent the two spatial dimensions and
a stack of images collected over time represents the temporal di-
mension (refer to Figure 5). Cells, when they move in space over
time, sweep a volume in this spatio-temporal space. A point inside
this volume belongs to the cell, and those outside do not. Thus, ev-
ery point in this spatio-temporal space has semantic meaning rep-
resenting if it belongs to a particular cell or not.

The third level of semantics is a supplementary labeling of the

Time

Figure 5. This image shows different semantic labels of the space
using an actual data collected during an experiment. The entire 3D
spatio-temporal space defines an experiment, a slice in the time do-
main defines a frame, the swept volume as shown in the figure de-
fines a cell, the event is shown as a split in the swept volume.
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points in this spatio-temporal space that defines an event. An event
is an interesting phenomenon that occurs for a short period of time
and usually is localized in space. For example, the events that we
are interested in are cell divisions and cell deaths. These events are
localized in the space in the neighborhood of the cells and can span
a short time interval. Hence a point in this spatio-temporal space
can have multiple semantic labels — those belonging to a cell and
those belonging to an event.

The above formalization provides us with a framework that al-
lows data representation, data management, and query processing
to be centered around these four semantic elements: experiments,
frames, cells, and events. Data management can create a hierarchy
of data using these elements, all computed parameters can be asso-
ciated with one of the above four semantic elements, and the query
system can provide mechanisms to explore these four elements.

6 DATA MANAGEMENT

Following the segmentation and tracking, various statistical param-
eters of the cell and frame are computed including area, perimeter,
speed of motion, and total brightness of every cell, number of cells
in every frame, etc. Data management systems in the context of
visual analysis do not only try to optimize storage and access, but
also have to be designed to optimize the navigation, exploration,
and query processing as demanded by a typical user.

There are two kinds of data used in our system — first is the
data that is used only for visualization like the raw image data that
does not have semantic meaning but only has indexing, and the
second kind of data like the statistical and computed data that has
semantic meaning and hence will be queried upon. The former is
usually the output of sensors and is stored in its native format —
for example, the microscope output image is stored as image files
(JPEG, TIFF, etc.). The computed data that has semantic meaning
is stored in relational database management system (RDBMS)
for ease in querying. But the efficiency of such RDBMS systems
depends on the size of the data set. We improve the efficiency
by identifying entropy reducing patterns in the computed data set
using the following observation.

Semantic Statistical Data: For interactive visual analytics, fast
and accurate data access is essential for unobstrusive interaction
with the system. We use a relational database management system
to store and query the computed, statistical data. The design of the
RDBMS follows the application specific observation and needs of
the data organization and query patterns. From the spatio-temporal
analysis of our data set (Section 5) it is clear that the data can be
classified in a hieararchical manner consisting of database tables
for experiments, frames, cells, and events. The structure of the
database is shown in Figure 6.

Semantic Partitions: Even within the computed data, there are
special subsets of data that are all related to each other in the sense
that all have the same semantic meaning and common usage— for
example, after segmentation of the image, all collection of pixels
belonging to the same cell will have the same semantic association,
and all these pixels will be accessed and used together in any further
querying or visualization. We call such data sets partitions. These
2D data sets, such as cell boundaries and cell-pixel association lists
cannot be efficiently encoded in the form of a table in RDBMS. Fur-
ther querying one data within a partition is equivalent to querying
all data within the partition. So we store these individual partitions
in different file formats — images or flat files, as is required by the
nature of the data, and use meta links from the RDBMS systems to
access the complete data.

These data in the flat files need to be formatted for use into the
visual analytics system. For this, we have proposed the model
of wrapper classes that read data from flat files, attach semantic

meaning to the raw bytes and pass the information to the visual
analytic system. This hybrid system of storing access information
in RDBMS and lower (pixel) level details in flat files gives rise
to an efficient data model that is also easy to implement. Further,
such a system design can be queried on numerical data (statistical
data) and answer visual (i.e. spatial) queries efficiently.

Semantic Images: The image data acquired from the mi-
croscopy system is a two dimensional spatial slice in the semantic
space as described in Section 5. Visualization of images is
achieved by first gathering the image data and attaching semantic
meaning to the images from the data stored in partition files. The
partition file consists of segmentation information in the form of
pixel-cell association represented as image masks, also called as
‘cell overlays’. The boundaries of the cells are stored as flat files
as a sequence of (x,y) pixel coordinates. From an implementation
point of view, our system has an image wrapper, which reads the
image files, composes and formats them to show cell overlays
and boundaries. The flat files are stored as length delimited array
dumps, i.e. they contain raw bytes representing the lists of pixels
prefixed with length of the following array and the identifier for the
cell whose boundary is formed by that array. Caching and transfer
from the hard disk is implemented using API buffers.

Cell ID INT(10)
Frame ID \;{%%}eu Centroid X Event ID
. INT(10) : : CHAR(1)
ﬁ\l"%ﬁ'(')')"e"t I Number of Cells \;VL%%"TM Centroid ¥ Cell ID
SMALLINT(5) INT(10)
Experiment 1D giealBICINLI20) Event Type
INT(10) Intensity DOUBLE INT(10)

Perimeter INT(10)
Frame ID INT(10)
Cell Tag CHAR(1)

Figure 6. Entity-Relationship Diagram of the Database.

7 VISUALIZATION AND NAVIGATION

As we have seen in the earlier sections, data used in our system
exists at multiple levels of hierarchy like experiments, frames and
cells and in multiple formats like image and statistical data. Visual
representation of this data in a way that communicates the semantic
meaning is termed as visualization. Using one form of data visu-
alization to access other data through possibly different levels of
hierarchy or different attributes is termed navigation. A visual an-
alytics system integrates these two, so that a user can recognize
patterns in the correlating parameters.

7.1 Visualization Entities

The goal of a successful visualization system is to allow easy cogni-
tion. A user must be able to derive certain meaning from the visual
representation of raw data. As human perception is tuned to find-
ing relations, providing visualization methods that allow for easy
projection of such inter-relation is the key to good analytics.

Data in our system can be categorized into two formats — raw
data including the microscopy images that serve as the input to the
system, and semantic or statistical data like attributes of a cells and
events, which are derived from processing the input data. Our vi-
sualization entities should handle data of these formats. Further,
since the input images are time-lapse images, our visualization sys-
tem should also handle dynamic and kinematic properties of various
objects.

Using the above mentioned classification, our system presents
the following visualization entities:
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Figure 7. Visualization Entities: Tabular representation, Charts (showing how area and GFP content of a cell changes over time and a Mitosis

event labelled M), Frame animation

Frame Animation: In order to provide users with the ability to
visualize time-lapse data sets, for example, how cells change or
move across time, we present an Image Animator (Figure 7), which
is a time-delayed sequence of images that the user can interact
with. This sequential display of images is essentially the slicing of
the 3D space described in Section 5. The user can select (multiple)
cells to visualize their motion in time in a new animation frame.
Animations are a natural visualization mechanism to show 2D
time-lapse data.

Visualization Charts: Statistical data in our system is pre-
dominantly time-varying. Line charts (as in Figure 7) are widely
regarded as a good visualization technique for 1D time-varying
data [6]. We have also provided the functionality by which a user
can view multiple attributes at the same time using multi-line
charts (as in Figure 7). Through such visualization techniques,
the user can easily correlate different time-varying data. Further,
we also label the charts at appropriate time instances with events
in order to show further correlation between events and statistical
parameters (Figure 7).

Tabular View: The tabular view is an alternative visualiza-
tion method for statistical data, and is considered the best
presentation technique when precise information about the data is
required (as in [6]). We present the user with numerical data in a
tabular form on demand (Figure 7). The tabular representation of
data allows a user direct visualization of the parameters associated
with one or more cells.

7.2 Navigational Entities

Navigation is described as the process of moving between one vi-
sual representation of the data to another through user interaction
with the purpose of finding patterns in the data. An efficient naviga-
tion system unobtrusively and interactively fetches, composes and
formats the data to present the next view of the data being analyzed.
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Figure 8. Navigational Entities: Tooltips and context menus.

The general principle of a visual analytics system is to present data
that is essential for understanding of patterns etc., in the most un-
cluttered manner with the concept of ‘details on demand’. This
principle ensures that the user is not overwhelmed with the numer-
ical or otherwise highly precise data when he is simply looking for
an abstract view of the model. Further the navigation process re-
quires that the visualization entities be cognizant of the semantic
meaning of the entities being displayed. In our system we attach
semantic meaning to the display primitives using data entities like
cell masks through which every pixel of the image is aware of the
cell it belongs to. This allows us to query the attached statistical
parameters of the cells when the user interacts with the pixel.
There are two types of navigational data in our system — hierar-
chical data and attribute data. The hierarchical data, as represented
in the RDBMS (Section 6), has four levels including experiments,
frames, cells, and events. The attribute data defines the attributes
of each of the objects in the above hierarchical levels. The system
should be able to navigate to each level in the hierarchy as well as
the attributes contained in each level. In order to navigate through
the hierarchy we use two navigational entities, namely contextual
menus and hyperlinks in charts. In order to navigate among at-
tributes, we use ToolTips.
Contextual Menus: Contextual menus offer a set of navigation
choices based on the current state of the system. Normally, the
menu of choices corresponding to the selected object on which the
contextual menu is invoked is generated on-the-fly. This gives a
precise framework to implement navigation through the hierarchi-
cal data. One set of contextual menus has been implemented at the
frame level, where a user can click on a cell or multiple cells to vi-
sualize information pertaining to the selected cells (Figure 8). The
second set is at the visualization chart level where a user can select
a time instant or a range and view an aggregated information re-
lated to the selected time frame. For example, a user can right click
on any cell and view the average area of the cell using the context
menu.
Hyperlinks in Charts: Using hyperlinked charts, a user can navi-
gate from a chart that describes one or more time-varying attributes
of a cell, to a specific frame just by choosing a point in the chart at
that corresponding time instance. This then links to frame anima-
tions where the new image animator starts from the selected point in
time. Thus hyperlinked charts provide users with the ability to nav-
igate up the data structure hierarchy. The user can also select a time
range on the chart and use the context menu to either generate cell
statistics for that time range or drill down further into a new line
chart which represents different cell parameters over the selected
time range. This concept is also termed as zooming in [11]. This
new chart or animation can further interactively lead to other part
of data and types of visualization thus providing inter navigability
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between the multiple modes of visualization. For example, a user
can click on the Mitosis tag in the chart (Figure 7, center) and view
the image where the cell undergoes mitosis.

Tool-Tips: A tooltip is an element in which when the user places
the cursor at a particular visualized object and a small hover box
displays information about the object. We extend the concept of
tooltips by making them contextual in nature. In our system, when
a user hovers the cursor over a cell, information about that cell such
as when it divides, its area in the current frame, etc. are shown
in the hover box (Figure 8), while when the cursor is over a chart,
parameters like the time and the value are shown. This requires
quick fetching of data for formatting and display which is made
possible by our hybrid data storage described in Section 6.

8 SEMANTIC QUERYING

An effective visual analytic system should not only be capable of
representing and visualizing multi-modal data on request, it should
also be capable of aggregating data to solve queries asked at ab-
stract semantic level. The responses to these queries are generally
required to be generated on the fly and thus elicit a conversion be-
tween the semantic queries to the low level queries that derive data
from the data store.

In that direction, here we propose a model of querying language
suited specifically for querying the large database of images, its
semantics and the statistical data associated with the entities, all
related to the cellular experimental data in neuroscience.

8.1 Query Space Formulation

We observe that the queries are typically related to the objects —
frames, cells, and events, and their attributes. We assign unique
integer ids to frames, cells, and events. The query space can now be
thought of as an integer grid of the three dimensional space spanned
by the frames, cells and events axes. A discrete point F; ; exists
in this space if there is an event k associated with cell j in frame i,
(Figure 9, top). A scenario with no event is tagged with a special
event with id 0, Figure 9, bottom. In this formulation, the cell-
frame plane (with event id 0) shows the life of the cells through time
except the points where events happen. Many biological queries can
be answered by finding the points in a subspace of this 3D space.
The formulation of such queries starts with specifying a subset in
each dimension and computing the space resulting through union
or intersection of these subsets.

For example, let the frame-subset Sy be subsets of frames that are
of interest in frame axis. Similarly let S, and S, denote the subsets
of interest in the cell and event axes. Then the points in the union
or intersection of these subspaces are returned respectively by the
query functions

EVAL_UNION(S¢,Sc,Se) ={P, jkl(i€Sp)V (j €Se)V (ke Se)}

EVAL.INTER(Sy,Sc,Se) = {Pjxl(i € Sp) A(J € Se) A (k€ Se)}

Pictorial illustrations of these operations are shown in Figure 10.
We can extract the indices of just one of the axes — frames, cells,
or events, by projecting the resulting points in the appropriate axes.
Such a projection can be achieved by a simple type casting syntax.
For example, the set of all cell indices 7 of a point set P is given by:
T, = (cell)P = {j|P, j x € P}. Such type casting can be used, not
only to get the indices of the objects, but also to get the attributes of
the objects. For example, the set of areas of the cells A, of the query
point set P is given by A. = (area)P = {cell[j][i].arealP, €
P}, where cell[j][i].area gives the area of cell j at frame i. Specif-
ically, we use multisets to allow repetition of values in the set which
would enable easy computation of statistics on the values such as
average and standard deviation.

The union, intersection and set difference queries along the same
dimension are addressed using stand-alone set-operation functions.

For example, if S, and T;. denote two sets of cell indices, then their
union, intersection and differences can respectively be computed
using the function:

SET_-UNION(S, Te) = {Fi jkl(j € S¢) V (j € o)}
SET_INTER(S,Te) = {Pjkl(j € S ) A € Te)}
SET DIFF(S,, Te) = {Pjkl(j € Se) A (J ¢ Te)}

Similarly sets on frames and events will work with indices i and
k. Many biologically relevant queries can be converted to these
basic abstract query functions, and can be a powerful tool for hy-
pothesis framing and hypothesis testing by the biologists.

8.2 Query Example

In this section we show how the theory of queries as formulated
in the preceding sub section can be used to evaluate simple bio-
logically relevant queries. To calculate the average area of a cell ¢
within a range of frames f] to f;, the query sequence will look as
follows:

Let F = {f1,...,/2}, and U be the universal set in that particular
domain. Set of all query points that belongs to cell ¢ between the
range of frames is given by,

P = EVALINTER(F, {c},U)

The set of all areas of ¢ in the given frame range is A; = (area)P,
and the average area is given by A = average(Ay).

As a second example, let us find the set of all cells in which
each cell undergoes both mitosis (cell divisions) and apostosis (cell
deaths) in a given time interval (frame range). Note that mitosis
and apostosis are event attributes, and can be used as a type cast-
ing, similar to area on a set of query points, to return a set of events
that are of given type.

Let F be the set of all frames that are of interest. Let E, and
E, be the set of events within the frame range of interest F' that are
labelled mitosis and apostosis respectively.
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Figure 9. The Query space. The figure on top shows the three di-
mensional space spanned by cells, time and events. Each dot (green
or orange) describes an event for cells with respective ‘cell ids’. The
bottom figure shows the cell-time plane of no event, (event id = 0),
which represents the life line of cells.
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Figure 10. Left to Right, lllustration of EVAL_INTER, EVAL_.UNION, SET_INTER and SET_UNION.

E, = (mitosis)(EVALINTER(F,U,U))
E, = (apostosis)(EVAL.INTER(F,U,U))

Let C,,, and C, be the set of cells that undergo mitosis and apos-
tosis respectively within the frame range of interest. So,

Cp = (cell)(EVALINTER(F,U,Ey))

C, = (cell)(EVALINTER(F,U,E,))

Finally, set of all cells in which each cell undergoes both mitosis
and apostosis is given by,

Cres = SET_INTER(Cyn, Ca)

Similarly many simple yet biologically significant queries can be
answered by our query system. But there are complex queries that
need lists data structure instead of sets. Further, nested structures
like list of lists and sets of sets become important while computing
functions like ‘average area of each of the cells in a range of frames’
that would return a list of numbers instead of a single number. We
will strengthen our query system to handle such complex data struc-
tures and queryies, and implement the relevant access functions.

In our current implementation, we have provided a limited
querying capability that would implement aggregate functions like
count, average, stddev and the set function, EVAL_INTER, on
three dimensions.

9 EVALUATION OF OUR SYSTEM

The system, being an end to end pipeline, helps neurobiologists
perform experiments and analyze the results. The proposed visu-
alization and querying methods help them derive higher level bio-
logically relevant knowledge from experiments. For example, one
biologically important statistical pattern that the biologists observed
using our system is that when a cell is about to undergo mitosis, it
contracts, loses its branches and it’s protein content aggregates. It
can be seen from the chart in Figure 7, that at the time of mitosis
(marked by M), the area of the cell shrinks rapidly. From our sys-
tem, the biologists also noticed the decrease in cell metabolism in
terms of GFP content and production just before, during and just af-
ter mitosis, as seen in the chart in Figure 7. Our collaborators could
assess the time required for the the rate of GFP production to return
to normal, accurately. Such discoveries of cellular behavior will be
later used in other experiments to control cell divisions, mobility,
metabolism and other processes.

Our neurobiologist collaborators enjoyed using the system and
its fluidity in navigation through different data representations.
They could visually corroborate the hypotheses and surmises that
they had about the cell activities. Currently the query system is
limited to what could be achieved through pull-down menus. A
more powerful querying system will enable much more involved
interaction of the users with the system.

10 FUTURE WORK

The modular design of our system allows for it to be modified in
multiple ways to achieve scalability in functionality. In stem cell re-
search itself, a type of analysis that biologists perform is fate anal-
ysis, where they analyze what the fate of a stem cell is. Stem cells
change via the process of mitosis and metabolism, and finally be-
come specific cellular tissue (like neurons or skin cells). It is useful
to identify which stem cell ended up as a particular type of cell and
whether the initial stem cell could actually produce multiple types
of tissue. The segmentation and tracking module could be changed
to allow identification of different types of cells based on their flu-
orescence under different conditions. From the data provided by
the segmentation and tracking module, the visual analytics system
can be extended to provide graphs that allow the user to see how
different cells change thus allowing them to perform fate analysis.

We can also extend the existing system to allow recognition of
cells other than the stem cells. The visual analytics system as it
exists currently can take in such multi-cellular data and save them
as different experiments. Due to our modular design, our system
can be used in a different lab setup with very minor changes to only
the Segmentation and Tracking parameters.

The current query system can be extended to provide higher level
queries. A more formal representation of the query language can al-
low for a wider range of biological queries to be answered. Further,
we are also working on visual query system that is as powerful as
a textual query system. All the above mentioned extensions can al-
low for a robust Visual Analytic system that can provide immense
analytical capability to cellular biologists.

11 CONCLUSION

In this paper, we explore the methods and implementation of a vi-
sual analytics system for biological data. We have developed meth-
ods of segmentation and tracking of human neural stem cells and
built a visual analytical system of the data collected from such a
tracking system while giving importance to ease of use of visualiza-
tion and intuitive navigation. We have also developed an interpreta-
tion of the spatio-temporal space in order to explore the possibility
of querying the system for regions of interest in such a space. We
demonstrate the capability of the querying language by phrasing bi-
ologically relevant queries in abstract form. Such an interpretation
also requires a fast access to layered and hierarchical data which
is enabled by our hybrid data management model that satisfies the
requirement of interactivity of the visualization system and the re-
quirement of precision of a query system.

In essence, we have an end-to-end system that acquires image
data, demarcates the semantic entities, provides visualization of the
dynamics of those entities and allows users to navigate between
many visualization entities, and finally gives a framework for solv-
ing many biologically relevant queries.
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