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Abstract Performance of interactive graphics

walkthrough systems depends on the time taken to fetch

the required data from the secondary storage to main

memory. It has been earlier established that a large frac-

tion of this fetch time is spent on seeking the data on

the hard disk. In order to reduce this seek time, redun-

dant data storage has been proposed in the literature,

but the redundancy factors of those layouts are pro-

hibitively high. In this paper, we develop a cost model

for the seek time of a layout. Based on this cost model,

we propose an elegant algorithm that computes a re-

dundant data layout with the redundancy factor that

is within the user specified bounds, while maximizing

the performance of the system. Unlike most existing

methods, our data layout method can work with mod-

els with textures. The interactive rendering speed of

the walkthrough system was improved by a factor of
2-4 by using our data layout method when compared

to existing methods with or without redundancy.
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Fig. 1 Urban model: 100 million triangles, 12 GB with tex-
tures. Using our redundancy based data layout method the
walkthrough rendering speed for this model was improved by
a factor of 2 over existing methods.

1 Introduction

In typical walkthrough systems, data sets consisting of

hundreds of millions of triangles and many gigabytes

of associated data (e.g. walking through a virtual city)

are quite common. Rendering such massive amounts

of data requires out-of-core rendering algorithms that

bring only the required data for rendering into main

memory from secondary storage. In this process, in ad-

dition to the rendering speed, the data fetch speed also

becomes critical for achieving interactivity, especially

when we handle large-scale data. In general, data fetch

speed depends on data seek time and data transfer time.

Transfer time depends only on the amount of data that

is transferred. Seek time is the time taken to locate the

beginning of the required data in the storage device and

depends on different factors depending on the storage

medium.

For a hard disk drive (HDD), its seek time depends on

the speed of rotating the disk, and the relative place-

ment of the data units with respect to each other, also

called the data layout [13]. For a solid state drive (SSD),
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this seek time is usually a small constant and is in-

dependent of the location of the data with respect to

each other [1]. An earlier work utilized this difference

between SSD and HDD, and designed a data layout

tailored for using SSDs with the walkthrough applica-

tion [15]. There have been many other techniques uti-

lizing SSDs for various applications [16]. SSD, unfortu-

nately, is not the perfect data storage and has its own

technical problems, including limited number of data

overwrites allowed, high cost, and limited capacity [13].

On the other hand, the HDD technology – including

disk technologies such as CDs, DVDs, and Blu-ray discs

– has become quite reliable and inexpensive thanks to

their extensive verifications and testing, and is thus in

widespread use. Even for massive data sets HDDs are

still and will be the preferred medium of storage for

the foreseeable future [13], mainly because of its sta-

bility and low cost per unit. As an example, according

to [3], as of 2014, an HDD can cost $0.08 per GB, while

an SDD can cost $0.60 per GB. As a result, optimizing

components of walkthrough systems with HDDs is crit-

ical. In particular, addressing the seek time, the main

bottleneck of accessing data from HDDs, remains the

main challenge for interactive rendering of massive data

sets.

There are generally two types of disk-based secondary

storage devices. For devices with constant linear veloc-

ity (CLV), for example, Blu-ray, the seek speed is lin-

early dependent on the seek distance, the physical dis-

tance between data units. For devices with constant an-

gular velocity (CAV), such as modern CDs and DVDs,

most of the data is stored along the rim to enable faster

seek time, so we can assume the seek speed is almost

linear which respect to seek distance. In both cases,

minimizing seek distance generally produces a data lay-

out that will minimize seek time.

In this paper, we leverage the inexpensive nature of

HDDs to store redundant copies of data in order to

reduce the seek time. Adding redundancy in order to

improve the data access time is a classic approach, e.g.,

RAID [12]. Redundancy based data layouts to reduce

the seek time in walkthrough applications were intro-

duced in a recent work [7], in which the number of seeks

for every access was reduced to at most one unit. How-

ever, in order to achieve this nice property, the redun-

dancy factor – the ratio between the size of the data

after using redundancy to the original size of the data

– was prohibitively high around 80.

Another recent work [8] took the data transfer time,

seek time, and redundancy, and proposed a linear pro-

gramming approach to optimize the data transfer and

seek time in order to satisfy the total data fetch time

constraint. In the process, redundancy was a hidden

variable that was minimized. Unfortunately, this ap-

proach does not directly model redundancy or seek time,

and thus can have unnecessary data blocks and unre-

alistic seek times. For example, accessing two adjacent

data blocks is considered as two different access, and

the information about the intersection data between

two different access patterns is not used in any way to

minimize redundancy.

Main contributions: In this paper, we propose a cost

model for seek time based on the actual number of data

units between the requested data units in the linear

data layout. Using this model, and given the data access

requirements for a walkthrough application, we develop

an algorithm to duplicate data units strategically to

maximize the reduction in the seek time, while keeping

the redundancy factor within the user defined bound.

We will show that our greedy solution can generate

both the extreme cases of data layout with redundancy,

namely the maximum redundancy case (a layout where

seek time is at most one) and the no-redundancy case

(a simple cache oblivious mesh layout with a potentially

high seek time), and in practical applications, a reason-

able redundancy factor can be determined adaptively

to achieve high performance improvement with low re-

dundancy cost. Although [7] can also generate the single

seek layout, our single seek layout has a substantially

lower redundancy factor than that of [7] because, while

[7] just repeats the data required for different access

requirements, we also consider the common blocks be-

tween the access patterns and place them strategically

without duplication, thus we can achieve a single seek

layout with much lower redundancy. We show that the

implementation of our algorithm significantly reduces

average delay and the maximum delay between frames

and noticeably improves the consistency of performance

and interactivity.

2 Related Work

Massive model rendering is a well studied problem in

computer graphics. Most of the early works focused on

increasing the rendering efficiency. At that time the fun-

damental problem was not fitting the model into main

memory, but fully utilizing the speed of the graphics

cards. Hence these works provided solutions to reduce

the number of primitives to be rendered while maintain-

ing the visual fidelity. These solutions included level-of-

detail for geometric models [11], progressive level of de-

tail [6,5,4,17], and image based simplification [2]. Soon
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thereafter the size of main memory became the bot-

tleneck in handling ever increasing sizes of the model.

Hence memory-less simplification techniques [9] and other

out-of-core rendering systems [18,19,14] emerged in which

just the limited amount of required data that needs to

be processed and rendered was brought from the sec-

ondary storage to main memory.

The speed at which this data could be brought from

the secondary to main memory in these out-of-core al-

gorithms is limited by the data bus speed, disk seek

time, and data transfer time. These limitations could

be ameliorated to some extent by better cache utiliza-

tion that would increase the utilization of data that is

brought to main memory and thus reduce the number

of times the disk read is initiated. This meant that sub-

sequent works focused on cache aware [15] and cache

oblivious data layouts [20,21] on the disk to reduce the

data fetch bottleneck. Our work falls under this class

of algorithms that reduces the data fetch time.

Redundancy based data layouts were mentioned in [12,

7,8] as potential solutions to the problem of reducing

seek time. In particular [8] presented a data layout al-

gorithm based on integer programming specifically use-

ful in walkthrough applications that models the seek

time as the number of seeks to the beginning of dif-

ferent data groups. These data groups are the ones to

be fetched to render one frame. However, there were

major drawbacks. First, although it provides the data

units to be grouped and considered as one seek, for each

seek it does not provide a data layout. This is because

it does not relate one data group with another. Such an

approach could easily result in unnecessary data block

duplications since groups of data units can overlap with

each other and only one copy of the common data unit

may be required. There is no mechanism in the integer

programming solver to detect whether this redundancy

is necessary because of some scene context or simply

created blindly due to local optimization. The redun-

dancy minimization is thus not modeled after physical

representation of the data layout on the disk. The sec-

ond major drawback is that the model for seek time is

also not based on physical reality. Typically, seek time

depends on the relative distance on the disk between

the last data unit accessed and the data unit currently

being requested. However, in [8], seek time is simplis-

tically modeled, as number of data groups accessed for

each fetch independent of the number of data units be-

tween these data groups. Irrespective of whether the

requested data blocks are adjacent to each other or far

apart, this model would assign the same cost for both

layouts. Our approach aims to address these issues.

Fig. 2 City model: 110 million triangles, 6 GB

3 Redundancy-based Cache Oblivious Data

Layout Algorithm

3.1 Definitions

Let us assume that the walkthrough scene data, includ-

ing all the levels of details of the model, are partitioned

into equal sized data blocks (say 4KB) called data units.

This is the atomic unit of data that is accessed and

fetched from the disk. Typically, vertices and triangles

that are located spatially closely (and belong to the

same level of detail) have high chances of being ren-

dered together, and hence can be grouped together in a

data unit. All the data units required to render a scene

from a viewpoint is labeled as an access requirement.

There can be many different ways of defining access

requirements and data units. One simple choice is to

introduce a concept of navigation space for the walk-

through application. The navigation space in the walk-

through scene, which defines the space of all possible

view points, can be partitioned into cells, and all the

data units required by each of the viewpoints within a

cell is grouped together to define one access require-

ment. Thus the number of cell partitions define the

number of access requirements. Primitives in a data

unit can be visible from many viewpoints, and hence

that data unit will be part of many access requirements.

That was one example of data units and their access

requirements. In general, the access requirements are

determined by the application and are meant to be sets

of data units that are likely to be accessed together.

Suppose that we have a linear ordering of data units

that may eventually be the order in which they are

stored in the hard drive. Given an access requirement

A, the total span of A is the total number of data units

between the first and last data units that are used by

A. If a data unit is not required by A, but lies between

the first and last unit of A, then it is still counted in the

span of A. Figure 3 shows a linear order of data units

and three different access requirements shown by solid,

double-dashed and dotted lines. The span of an access



4 Jia Chen, Shan Jiang, Zachary Destefano, Sungeui Yoon, M. Gopi

10 11 12 13 145 6 7 8 91 2 3 4

Fig. 3 Illustration of a linear order of data units and three
example access requirements. Lines connect data blocks that
belong to the same access requirement. The span of the access
requirement shown in the solid line is 11.

requirement is the number of blocks between the first

and the last data unit that use that access requirement.

For example, for the access requirement shown with the

solid line, the span is 11; the double-dashed line one has

span 12, and the dotted line one has span 11. A data

unit can be part of many access requirements. In the

example shown in Figure 3, data units 1, 4 and 12 are

part of two access requirements and data unit 9 is part

of all three.

3.2 Seek Time Measure

Given a linear order of data units and the access re-

quirements, we would like to estimate the seek time for

that application. For each access requirement, the read

head of the hard disk has to move from the first data

block to the last irrespective of whether the intermedi-

ate blocks are read or skipped. Hence the span of an ac-

cess requirement can be used as a measure of seek time

- time taken to seek the last data unit starting from the

first data unit. It is interesting to note that [20] used

span to measure the expected number of cache misses.

Typically, with every cache miss, the missing data will

be sought in the disk and fetched, thus adding to the

seek time. In this aspect, using the span to measure the

seek time is justified too. In the following measure of

total seek time, we use a relative probabilistic measure

to include the frequency of use of each access require-

ment. Let I be the set of access requirements and Ai

represent the span of the access requirement i. Let pi be

the probability that Ai will be used during rendering.

We now define Estimated Seek Time (EST) as:

EST =
∑
i∈I

piAi

In this paper, we assume all access requirements are

equally likely to be used thus all pi values will be the

same. We will use this to simplify the above equation,

by ignoring the common scale factor, to the following

for our purposes.

EST =
∑
i∈I

Ai.

It is important to note that the same measure can be

used to describe the data transfer time. As mentioned

earlier, whether the data between two required data

units is read or skipped, the time taken to go from the

first to the last required data unit is a measure of the

delay caused by the disk. If all the intermediate data

in the span is read, this time will be a measure of data

transfer time, and if it is skipped, it is a measure of seek

time. In other words, this measure also defines very well

the total data fetch time, which is the sum of data seek

and transfer times. However, in this paper, we assume

that only the required data is read and use this measure

to quantify seek time.

The seek time is also measured in other works [8,7]

as number of seeks and not parameterized using the

distance between the required data units. In this work,

we model seek time as the distance between the data

units and optimize this measure. Using this measure,

we show better performance than earlier works.

If we reduce the total EST in our optimization, then

the average estimated seek time will be reduced. Dur-

ing optimization, we first choose and process the access

requirement with the maximum span. As a result, we

not only reduce the average span, but also the maxi-

mum span, and hence the standard deviation in spans.

This will in turn have an effect of providing consistent

rendering performance with low data fetch delays as

well as consistently small variation between such de-
lays during rendering.

3.3 Algorithm Overview

Given the access requirements and the data units, the

goal of our algorithm is to compute a data layout that

reduces the EST. In [20], the only allowed operation

on the data units is the move operation and the opti-

mal layout is computed using only that operation. For

our purposes, we are allowed to copy data units, move

them, and delete them if they are not used. Using these

operations, we want to minimize EST while also keep-

ing the number of redundant copies as low as possible.

Given an initial ordering of data units, we copy one

data unit to another location. We reassign one or more

of the access requirements that use the old copy of the

data unit to the new copy making sure the EST is re-

duced. If all the access requirements that used the old
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copy now use the new copy of the data unit, then the

old copy is deleted. We repeat this copying and possible

deletion of individual data units until our redundancy

limit has been reached.

Blocks to Copy: Note that the span of an access re-

quirement does not change by moving an interior data

unit to another interior location. Cost can be reduced

only by moving the data units that are at the either

ends of the access requirement. This observation greatly

reduces the search space of data units to consider for

copying. Additionally, for the sake of simplicity of the

algorithm, we operate on only one data unit at a time.

In our implementation, we consider a group of data

units as one data unit if they are adjacent to each other

in the current layout and are always accessed together

by any potential access requirement.

Location to Copy: Based on the above observation,

given an access requirement, we can possibly move the

beginning or the end data units to a position that will

reduce the span of the access requirement. This oper-

ation will reduce the span of a specific access require-

ment, however, if the new location of the data unit is

in the span of other access requirements, such as loca-

tion 11 in Fig. 3, it increases the span of each of those

accesses (all those three access requirements in Fig. 3)

by one unit. Let j be the new location for the start or

end data unit of an access requirement i. Let ∆Ai de-

note the change in the span of the access requirement

i by performing this copying operation. Let kj denote

the number of access requirements whose span overlaps

at location j. The reduction in EST by performing this

copying operation is given by

∆ESTC(i, j) = ∆Ai − kj ,

where C denotes copying the data unit for access re-

quirement i to the location j. If copying of the data

block is the chosen operation, we find the location j

where the start or end data unit of the access require-

ment i needs to be copied using a simple linear search

through the span of i as

argmaxj(∆ESTC(i, j)).

Assignment of Copies to Access Requirements:

The above operation would result in two copies of the

same data unit, say dold and dnew. Clearly the new copy

dnew in location j will be used by the access require-

ment i. But dold could be accessed by multiple other

access requirements. All other access requirements that

accesses dold can either continue to use dold or use dnew
depending on the overall effect on their span. Let S

be the set of access requirements whose span does not

increase by using dnew instead of dold. Now the total

benefit by copying the data unit dold of the access re-

quirement i to the new location j is

∆ESTC(i, j) = ∆Ai − kj +
∑
s∈S

∆As.

If copying of the data block is the chosen operation,

we find the location j where the start or end data unit

of the access requirement i needs to be copied using a

simple linear search through the span of i as

argmaxj(∆ESTC(i, j)).

Moving versus Copying: Let T be the set of access

requirements whose span will increase by accessing dnew
instead of dold. Further, let kold be the number of access

requirements in whose span dold is. If we force all the

access requirements that used dold to use dnew and then

delete dold – in other words, if we move d instead of

copying – then the benefit of this move would be given

by

∆ESTM (i, j) = ∆Ai − kj +
∑
s∈S

∆As +
∑
t∈T

∆At + kold

= ∆ESTC(i, j) +
∑
t∈T

∆At + kold,

where ∆ESTM (i, j) gives the benefit of moving a start

or end data unit of the access requirement i to position

j. Note that each of ∆At is negative. Hence the benefit

of moving might be more or less than the benefit of

copying depending on the relative values of
∑

t∈T ∆At

and kold. But the main advantage of moving instead

of copying is that this operation does not increase the

redundancy thus it keeps the storage requirement the

same. So we perform moving instead of copying as long

as ∆ESTM (i, j) is positive. If moving of the data block

is the chosen operation, we find the location j where

the start or end data unit of the access requirement i

needs to be moved using a simple linear search through

the span of i as

argmaxj(∆ESTM (i, j)).

Data Unit processing order: We now need to fig-

ure out how to use this information to decide in what

order the copying and moving should be done. We will

make two heaps: EM and EC . The EM heap will orga-

nize the move operations and consist of the values of

∆ESTM (i, j) for the start and end data units for all

access requirements i where the units are put in their

optimal location j. The EC heap will be the same ex-

cept it will organize the copy operations and consist of

the values of ∆ESTC(i, j).
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Input: Data units and their access requirements (AR) ;
for start and end unit of each AR i do

Find optimal location j for copy;
Calculate ∆ESTM (i, j) and insert into EM ;
Calculate ∆ESTC(i, j) and insert into EC ;

end
while true do

while top element of EM is positive do
Pop top element and move the data unit to its
destination ;
Update EM and EC ;

end
if there is more space for redundancy then

Pop top element and copy the data unit to its
destination ;
Update EM and EC ;

else
break

end

end

Algorithm 1: Pseudo-code for our algorithm

We process the EM heap first as long as the top of the

heap is positive and effect the move of the data unit

that is at the top of the heap. After each removal and

processing, ∆ESTM and ∆ESTC of the affected access

requirements and the corresponding heaps are updated.

If there are no more data units where ∆ESTM is pos-

itive, then one element from the top of the heap EC

is processed. After processing and copying a data unit

from the top of heap EC , the heaps EC and EM are

again updated with new values for the affected access

requirements. If this introduces an element in the top

of EM heap with positive values, the EM heap is pro-

cessed again. This process gets repeated until the user

defined bound on redundancy factor is reached. As a

summary, the pseudo-code of this algorithm is shown

in Algorithm 1.

4 Complexity Analysis

We now analyze the running time and storage require-

ments of our algorithm. Let N be the number of data

units and A be the number of access requirements. We

will use m as the average span of a single access require-

ment. Let r be the redundancy factor limit specified by

the user so that O(rN) units can be copied. For the

sake of analysis each data unit will be used by O(A)

access requirements and at each location there will be

O(A) access requirements whose span overlaps it.

Time Complexity: The construction of the heaps EM

and EC involves computing the benefit information for

all A access requirements and inserting each one into

the heap. For a single access requirement, computing

the benefit information of moving or copying one of

its data units involves scanning each data unit in its

span. This approach takes O(m) operations. Calculat-

ing
∑

s∈S ∆As and
∑

t∈T ∆At will take O(A) opera-

tions since there are O(A) access requirements to poten-

tially have to sum over. Inserting this benefit informa-

tion into the heap takes O(log(A)) operations. In total

then it takes O(m+A+ logA) or O(m+A) operations

per access requirement to get the benefit information.

The initial construction thus takes O(A(m+A)) oper-

ations.

After the initial construction, the move and copy loops

are executed. In every iteration of move or copy, an ele-

ment from the top of the heap is removed and processed,

the benefit function is recalculated for affected access

requirements, and the heap is updated. There are po-

tentially O(A) overlapping access requirements whose

benefit information needs to be recalculated. As shown

above, for each of these access requirements O(m+A)

operations are required to perform the recalculation

and update the heap. Each iteration of move or copy

thus takes a total of O(A(m+A)) operations.

For simplicity we will assume that the move loop runs

O(N) times total. There are O(rN) copies made so

there are that many iterations of the copy loop. We thus

can assert that there are O(rN + N) iterations of the

move or copy loops. We can simplify this to O(rN) op-

erations since r ≥ 1. In total then the moving and copy-

ing loops will take O(rNA(m + A)) operations, which

is also the running time for the whole algorithm.

Space Complexity: During the run of the algorithm,

we have to store the number of overlapping spans at

each data unit, which will require O(N) storage. We

will also have to store a heap of access requirements,

which can be stored using O(A) space. We also have

a list of access requirements and that information will

take up O(A) space. In total we thus have O(A + N)

storage space used during the run of the algorithm.

5 Experimental Results

Experiment context: In order to implement our al-

gorithm, we used a workstation that is a Dell T5400 PC

with Intel (R) Core (TM) 2 Quad and 8GB main mem-

ory. The hard drive is a 1TB Seagate Barracuda with

7200 RPM and the graphics card is an nVIDIA Geforce

GTX 260 with 896 MB GPU memory. The data rate

of the hard drive is 120 MB/s and the seek time is a

minimum of 2 ms per disk seek.
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Fig. 4 Boeing model: 350 million triangles, 20 GB. Overview
of model (top) and model detail (bottom).

Benchmarks: We use three models to perform our ex-

periments, each model represents a use case or scenario.

The City model (Figure 2) is a regular model that can

be used in a navigation simulation application or vir-

tual reality walkthrough. The Boeing model (Figure 4),

on the other hand, represents scientific or engineering

visualization applications. The Urban model (Figure 1)
has texture attached to it, which is commonly used in

games. By comparing performance of cache-oblivious

layout without redundancy [20] to our method using

redundancy on these three models, our goal is to show

that the redundancy based approach can achieve more

stable and generally better performance on different

real time applications.

To apply our method on these large-scale models, we

had to find a proper set of access requirements. An ac-

cess requirement represents a set of data that is highly

likely to be accessed together. In general, that question

is deep enough that it can be discussed as a separate re-

search topic. Here, however, we had good performance

using only simple schemes for creating access require-

ments. Each model ended up having a separate scheme.

For the Boeing model, the predefined objects are used

as a conceptual level to create access requirements. Sam-

ples of view positions are distributed across the model.

For each sample, four fixed directions and four random

directions are considered. Objects visible from this po-

sition in any one of these eight directions are added

to the access requirement for this specific sample. The

density of these samples depends on the complexity of

local occluders to reduce load of each access require-

ment, i.e. more samples are distributed to places with

more complex geometry.

For the City model, a 2D grid is used to divide the

space into square cells. The difference of the data be-

tween each pair of adjacent cells is considered as an

access requirement. By propagating this rule, access re-

quirements are created, and the number of them is de-

termined by the resolution of the grid [7].

The Urban model is different from the previous two in

a way that it involves textures. Building heavy redun-

dancy of textures increases the total size of the dataset

significantly, while keeping textures away from redun-

dancy leads to inevitable long seek time, which is com-

pletely against the philosophy of this work. To solve this

problem, we applied a spatial Lloyds clustering [10] on

objects. By moving centers of clusters, we look for a

solution such that each cluster involves almost same

amount of texture data. Between clusters, textures can

be redundantly stored, but within each cluster, texture

data are stored uniquely. In this way, each cluster is

used as an access requirement.

5.1 Results and Comparison with Prior Methods

In Figure 5, we show the results of using layouts with

redundancy factors that range from 1.0 to 5.0. The y

axis in this figure is the ratio of the estimated seek

time (EST) of the layout with redundancy over the EST

of the layout without redundancy. This value starts at

1.0 where redundancy factor is 1.0, meaning no redun-

dancy, and decreases as redundancy factor goes larger.

The rate of decrease is exponential with larger benefits

in the beginning meaning increasing the redundancy

factor there reduces the seek time much more signifi-

cantly than increasing the redundancy factor later. In

other words, it is worthwhile to limit the redundancy

factor used because after a certain point the cost of

using redundancy is very high – much more secondary

storage space will be used without any significant im-

provement in seek time. It also implies that our algo-

rithm dramatically reduces seek time in practice by us-

ing only small redundancy factors. The same phenom-

ena can be observed in Figure 6 . Figure 6 compares

the time per frame statistics of a cache-oblivious layout
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Fig. 5 Plot of the ratio of the EST of the layout with re-
dundancy over the EST of the cache-oblivious mesh layout
without redundancy for the City model. The ratio decreases
exponentially along with the increment of redundancy factor.
Based on the stopping threshold we are using in the experi-
ments, the algorithm stops at R=2.5. Redundancy factors for
the other models are determined in the same way.

Fig. 6 Statistics of time per frame (averaged per 10 frames)
for the city model, with and without redundancy. COL indi-
cates a Cache-Oblivious Layout that does not use any redun-
dancy. RF indicates the redundancy factor.

without redundancy [20] and data layouts computed us-

ing the proposed method with redundancy factor 2.5,

3.5, 4.5 respectively. From the figure, the overall render-

ing performance is improved by a factor between 2 to

4, and apparently the performance difference between

redundancy factor 1.0 and 2.5 is much larger than the

difference between 2.5 and 4.5. Based on the observa-

tions above, we adopt an adaptive method to determine

the final redundancy factor in our experiment: if there

is no upper bound specified by user, the algorithm will

stop optimizing when the decrease speed of ETS is lower

than a predefined threshold.

Figure 7 shows the comparison of our method with the

one proposed in [8]. When we do the comparison there

is again a performance benefit and less redundancy re-

quired. While the redundancy factor used for the linear

programming method was 8.3 which was the redun-

dancy that produced the best performance with that

method, the final redundancy factors in our method

are all less than 3.0. The graphs clearly show that our

Fig. 7 Statistics of time per frame (averaged per 200 frames)
for the City model (top), the Boeing model (center), and the
Urban model (bottom), using integer programming (redun-
dancy factor = 8.3) and our method (redundancy factor <
3.0).

method significantly reduces the maximum delay with

at most a third of the redundancy factor when com-

pared to [8] for all the three models. Reduction of max-

imum delay is the key for consistency in interactivity.

Additionally in [8], the user does not have any control

over the final redundancy factor however in our pro-

posed method, each time we duplicate one data unit,

we can halt it if the redundancy factor reaches a certain

threshold. This helps us to create data layouts with ar-

bitrary redundancy factors.

6 Cache Oblivious Layout With and Without

Redundancy

In the algorithm, we make a heap of data units that

will reduce seek time by just moving instead of copy-

ing them. We perform these moves first before working

with data units that need copying. This initial step will

produce a better solution than proposed by [20] without

adding redundant units. This result is possible mainly

because our optimization algorithm searches wider sets

of potential locations for moving cases in an efficient

manner. To show this, consider a case where we have

two access requirements of 5 data units each. Figure 8

shows an example of that kind of layout. In the middle

of that figure is the result of using the cache oblivi-

ous layout. Because it hierarchically constructs blocks

and arranges the units in each block, it does not detect

that the units with the black access requirement can be
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grouped together. On the other hand, the algorithm we

propose would shorten the black access requirements

without adding redundancy, as shown in the bottom of

that figure.

The algorithm in [20] did not necessarily produce the

best cache oblivious layout. However, even if we had

the best layout without redundancy, we would actually

achieve a better seek time using redundancy. We show

such an example with Figure 9. As can be seen in the

figure, the total seek time is 7 units which turns out

to be the minimum possible seek time without redun-

dancy, as found through a brute-force search. With re-

dundancy, the total seek time is the minimum required

which is 6 units. While a reduction from 7 to 6 units

may not seem dramatic, when this result is scaled up

to the hundreds of millions, this makes a big difference

in seek time, which we saw in practice.

Fig. 8 Example of two access requirements of 5 data units
each. The red line represents the boundary between blocks
in the cache oblivious layout hierarchy. The original layout
(top), cache-oblvious layout (middle), as well as the layout
after running our algorithm (bottom) is shown.

Fig. 9 Data Units with varying access requirements on the
top. The letters represent data units and each color represents
a different access requirement. It is laid out in its optimal
layout without redundancy on top. Its optimal layout with
redundancy is shown at the bottom.

7 Limitations

Our proposed redundant storage of data may limit edit-

ing and modification of data because the data has to

be modified at all copies. However, we foresee no prob-

lem in recomputing and updating the layout due to this

modification using our algorithm since every iteration

in our algorithm just assumes a layout and improves on

it. After data modification, we can delete/modify the

relevant data units, update the access pattern and run

a few iterations of our algorithm to get a better layout.

In other words, our algorithm is incremental and can

be used for dynamic data sets, which also might be a

result of scene editing and modification.

Our cost model does not consider distance between ac-

cess requirements. We only take into account distance

between data units in the same access requirement and

we do not consider the seek time between access re-

quirements. If we do take this account in our model,

then if we are given information as to which access re-

quirement is more likely to be used before or after an-

other access requirement we would have an even more

accurate model for seek time.

8 Conclusion

We have proposed an algorithm that creates a cache

oblivious layout with the primary goal of reducing the

seek time through duplicating some of the data units.

We proposed a cost model for estimating the seek time

of a data layout, and we move or copy data units to ap-

propriate locations such that it reduces the estimated

seek time. Given an arbitrary data layout, our algo-

rithm can generate a family of data layouts, which cov-

ers data layouts between the maximum redundancy case

and no-redundancy case. By considering the data units

shared by access requirements, our algorithm achieves

single seek layout with about one third of the redun-

dancy factor in [7], and due to the efficient data struc-

ture we applied, preprocessing time for our algorithm is

significantly less than previous methods. Unlike [8] and

[7], our algorithm enables direct control on the redun-

dancy factor: the redundancy factor can either be con-

strained by user specified bounds or determined adap-

tively, to achieve high performance improvement with

low redundancy cost.
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