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Abstract Remyelination therapy is a state-of-the-art tech-
nique for treating spinal cord injury (SCI). Demyelination—
the loss of myelin sheath that insulates axons, is a prominent
feature in many neurological disorders resulting in SCI. This
lost myelin sheath can be replaced by remyelination. In this
paper, we propose an algorithm for efficient automated cell
classification and visualization to analyze the progress of re-
myelination therapy in SCI. Our method takes as input the
images of the cells and outputs a density map of the ther-
apeutically important oligodendrocyte-remyelinated axons
(OR-axons) which is used for efficacy analysis of the ther-
apy. Our method starts with detecting cell boundaries using
a robust, shape-independent algorithm based on iso-contour
analysis of the image at progressively increasing intensity
levels. The detected boundaries of spatially clustered cells
are then separated using the Delaunay triangulation based
contour separation method. Finally, the OR-axons are iden-
tified and a density map is generated for efficacy analysis of
the therapy. Our efficient automated cell classification and
visualization of remyelination analysis significantly reduces
error due to human subjectivity. We validate the accuracy
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of our results by extensive cross-verification by the domain
experts.
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1 Introduction

The loss of myelin sheath or Demyelination results in the
disruption of signals within the axons. It is one of the
primary features in spinal cord injury (SCI) and neuro-
degenerative autoimmune diseases including multiple scle-
rosis (MS) [5, 13, 24, 29, 36, 39, 40]. The lost myelin sheath
can be replaced by a process called remyelination which
wraps the myelin sheath around the demyelinated axons
restoring the conduction of signals within the axons. Re-
myelination can be achieved by two kinds of cells: oligo-
dendrocytes and Schwann cells [4].

Active ongoing research in stem cells strives to show
that transplantation of human embryonic stem cell derived
endogenous oligodendrocyte progenitor cells (OPCs) into
adult spinal cord within a short period of time following
the injury enhances remyelination and promotes recovery
of motor function. These OPCs that are recruited to an area
of demyelination, differentiate into mature oligodendrocytes
that wrap myelin around the demyelinated axons [4, 21, 31].
Animal models for MS and SCI, however, suggest that re-
myelination does not reach completion [33, 36]. For this
reason, many therapies are being developed to either en-
hance the amount of endogenous remyelination, or to intro-
duce exogenous cells that are capable of remyelinating ax-
ons [8, 20, 34]. One such treatment include the transplanta-
tion of oligodendrocyte progenitor cells into the adult spinal
cord of rats within a short period of time following SCI. This
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Fig. 1 Different kinds of cells in the image. Left and middle show images obtained with different staining processes, and hence the overall color
difference. The right one is the zoomed in view of the middle image showing the different types of axons

therapy enhances remyelination and promotes recovery of
motor function. However, to study the progress of the ther-
apy, these oligodendrocyte-remyelinated axons (OR-axons),
created due to oligodendrocyte progenitor cell transplanta-
tion, need to be distinguished from the already myelinated
axons or axons remylinated by the Schwann cells already
existing in the body. The OR-axons are identified by their
characteristically thin myelin sheaths relative to the diame-
ter of the axons—when compared with the myelin sheath of
the axons remyelinated otherwise. Thus, the ratio of myelin
sheath thickness to axon diameter, G-ratio [36], needs to be
analyzed to identify the OR-axons. Following the identifi-
cation of OR-axons, their distribution has to be analyzed by
visualizing the size, location, and density of its clusters in
the image. By tracking such visualizations of microscopic
images periodically captured on different rat subjects before
and after the treatment, one can understand the growth rate
and site of the OR-axons, and hence the effectiveness of the
therapy.

1.1 Motivation

Remyelination is analyzed on microscopic images of 5 ×
625 µm2 areas aligned on a radially oriented line that origi-
nates from the central canal of the spinal cord and extends to
the outermost limit of the spinal cord cross section. The cur-
rent method for identifying remyelinated axons is the man-
ual line sampling technique [5]. There are two kinds of er-
ror introduced in manually estimating and classifying the
remyelinated axons. Since a manual process is very tedious,
the OR-axons are only identified in approximately 15% of
the actual area of pathology. In the rest of the area, it is
only estimated. This leaves out a high percentage of the area
introducing a large estimation error. Further, there is clas-
sification error because of the subjectivity involved in the
manual classification of the OR-axons. Note that the param-
eter critical for classification, G-ratio, is a ratio of two thick-
nesses. It is usually hard to evaluate a ratio visually. This,
is turn, makes it very tedious and time-intensive to estimate
the G-ratio for every OR-axons. Hence, it is often assigned

by relative measure through spatially local visual estimation.
This leads to more classification errors. It is not known how
much error is introduced to the data when there are mul-
tiple examiners counting these axons. These errors can be
reduced by increasing the percentage of the actual area of
pathology, but the sheer size of the number of samples col-
lected from the pathology makes this a daunting task when
performed manually. For example, since a microscopic slice
is taken every 2 mm of the spinal cord of an animal, in exper-
iments involving many animals, the OR-axon growth anal-
ysis can take several weeks. An increase in percentage of
counted area would not only increase the analysis time, but
might also increase the error due to human factors such as
fatigue.

An automated method to classify and visualize the distri-
bution of the OR-axons can alleviate all the above problems
and provide an incredibly useful analysis tool for research
in these kinds of cutting edge therapies. An automated sys-
tem will allow analysis of a higher percentage of area of the
pathology, at more frequent intervals, and at higher accu-
racy due to less subjectivity and human factor related errors.
Thus, it is evident that automated recognition, classification,
and visualization of the axons would be imminent in reduc-
ing the turn-around-time and the subjective error in this re-
search.

1.2 Technical challenges

Automating the process of recognition and classification of
the OR-axons and visualization of their distribution involves
taking as input a microscopic image (Fig. 1a) and creating a
density map (Fig. 10c, d) where blue regions indicate high
density clustering of OR-axons. The complexity of this au-
tomation is compounded by the following facts.

• The microscopic image is littered with a large amount of
“cellular debris,” i.e., proteins and other cell bodies that
have to be identified and rejected, or not identified at all.

• The oligodendrocyte cells do not conform to any particu-
lar shape. In fact, even basic shape properties like convex-
ity cannot be assumed. This demands a shape independent
classifier to distinguish the cells.
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Fig. 2 The pipeline of our proposed algorithm

• The average intensity level of the input images might
be different depending on the staining process (Figs. 1a
and 1b). Hence, relating intensities across images for con-
sistently identifying the cells is not possible, and this in-
tensity threshold for cell identification has to be learned
within each image.

1.3 Main contribution

Most existing methods for automatic cell analysis focus on
large, cellular matrices [44]. However, in cases where the
topology of the cellular structures is not uniform, as is typ-
ically the case in injury sites, methods for identification
and quantification of individual cells must be employed.
Our main contribution is in designing an end-to-end auto-
mated process that analyzes the input microscopic image
and returns an effective high-level visualization of the dis-
tribution of the OR-axons. We present a robust algorithm
to handle noise, subjectivity, and undersampling, by using
efficient computational geometry and stable statistical tech-
niques. Our method consists of the following five key steps.

1. Contour Detection: First, we detect the myelin sheath
surrounding the axons using progressive isocontours at
varying intensity levels (Sect. 3). This technique is a
shape independent process that makes use of the vari-
ational property of the intensities of the cell structures.
This also allows us to detect axon boundaries across im-
ages of different intensities and pathologies stained by
different dyes.

2. Contour Separation: Since the contour detection step
does not consider the shape of the axons, the boundaries
detected by this step may include multiple axons. We use
a Delaunay triangulation based method to separate these
cells and define a clean and unique boundary for each of
them (Sect. 4).

3. Noise Removal: The cells detected by the above steps
may include noise (e.g., cellular debris). In this step, we
identify this noise and remove the cells that do not repre-
sent axon structures (Sect. 5).

4. OR-Axon Classification: G-ratio is defined as the ratio of
the cell boundary (myelin sheath) thickness to the cell
diameter. The remyelination due to different cells can
be differentiated by the G-ratio of the cell. In this step,
we design a method based on G-ratio computation and
clustering to identify the oligodendrocyte-remyelinated
(OR)-axons from other axons (Sect. 6).

5. Density Map Generation: Finally, we use the distribution
of the detected OR-axons in the image to generate a den-
sity map that is effective in visualizing the size, location,
and density of their clusters in the area of the pathology
(Sect. 6.1).

The pipeline of the entire process, as described above, is
illustrated in Fig. 2. We corroborate our method by extensive
cross-verification by the domain experts to demonstrate its
accuracy and robustness.

We first discuss the relevant literature in Sect. 2. Then
we present the four steps of our automated algorithm in
Sects. 3 to 6.1. This is followed by experiments and anal-
ysis in Sect. 7. Finally, we conclude in Sect. 8.

2 Related work

Digital image cytometry [17, 18, 46], the analysis of cell at-
tributes from images, serves as an essential component of
biological research. Correct detection of relevant cell struc-
ture and boundaries is a challenging task in image cytometry
because of the varying intensity levels in the images occur-
ring from different staining protocols, varying sizes of the
specimen, difference in shapes across cell structures, and the
presence of large numbers of cellular debris.
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Cell detection algorithms using image processing and
computer vision techniques continue to be a significant area
of research [3, 6, 12, 18, 22, 28, 32, 35, 41, 42, 45, 46].
Shape based analysis of cells is a common approach used
by researchers [1, 10, 37] and is applicable to types of cells
that conform to specific shapes. Since the OR-axons can be
of any arbitrary shape, the shape dependent methods are not
useful and shape invariant analysis must be used for detec-
tion, identification, and classification of axons.

Watershed segmentation is a widely used shape-indepen-
dent approach for cell detection [16, 23, 27], but this algo-
rithm is susceptible to the presence of noise in the image.
A single outlier can impact large groups of pixels thereby
making the watershed segmentation unstable. Most cell de-
tection algorithms usually detect some cell structures that
are merged and need to be separated. Thus, segmentation
or separation of cell boundaries to detect individual cells is
an active area of research [7, 18, 19, 30, 46]. The active con-
tours method [7, 19, 43, 45, 46] is successfully employed for
cell analysis and usually produces robust boundaries even
for noisy images. Zimmer et al. [46] use an active contour
based cell segmentation approach to detect and track motile
cells. They use an edge map computed from deviation be-
tween local intensities to detect low contrast boundaries.
While active contours detects the cell structure by energy
minimization subject to external and internal constraints, our
proposed approach uses different contours of the same im-
age to classify a structure as a cell by analyzing the evolution
of boundaries detected by the isocontour algorithm progres-
sively.

In almost all applications, the nature of staining makes
the nuclei of cells more prominent compared to the outer
cell boundaries. A good cell segmentation algorithm has to
correctly identify the separating region between the adjacent
cell nuclei. Using a known cell nucleus, Jones et al. [18] use
non-Euclidean Voronoi diagrams on Riemannian manifolds
to detect cell boundaries and segment cells. The cell nucleus
is not known in our applications, and hence the approach
proposed in [18] is not applicable to our problem. We use
an Euclidean-space Delaunay triangulation based approach
to separate the detected axon boundary contours obtained
from progressive isocontouring. Furthermore, our method
directly works on the geometry of the 2D cell structure pro-
vided by the isocontouring algorithm, while [18] works on
higher dimensional space derived from the image parame-
ters.

We introduce the concept of progressive isocontouring
to detect all the cell structures followed by contour separa-
tion using Delaunay triangulation. This allows us to detect
event points when there is a morphological change in the
shape of the isocontours which can subsequently be used
in the post processing stage to detect generic cell struc-
tures. Similar computational geometry-based approaches to

topology tracking include efficient implementations of Reeb
graphs [11].1 The detected cell structures, once identified
as axons, are processed to identify the subset of OR-axons
using robust geometrical and statistical methods. A shorter
version of this method appears in [9].

3 Contour detection

Traditionally, axon detection algorithms use two tech-
niques—shape dependent analysis and edge detection. Since
the OR-axons can be of any shape, typical shape matching
algorithms cannot be used in our applications. Further, tra-
ditional edge detection methods also cannot be used due to
the presence of an abnormal number of debris in the image,
and the need for correct computation of relative size of the
detected boundaries in order to classify the axons.

The OR-axons sometimes can be classified by their
lighter intensity values in the image slices. The intensity
value at which these axons can be detected can vary over the
time elapsed from the remyelination procedure, and also de-
pends on the subjective manual staining process before the
microscopic images are taken. Hence, isocontouring at one
specific intensity level will not be a feasible solution for this
problem.

We present the progressive isocontouring technique—
isocontouring at progressively increasing intensity levels—
as a generic method to detect possible axon structures. For
this purpose, we first define the axon structure in this context
as illustrated in Fig. 3. Let us consider two simple closed
iso-contours at intensity i—the inner contour I (i) and the
outer contour O(i). Let these two enclose regions AI (i) and
AO(i) respectively such that AI (i) ⊂ AO(i). Then AO(i)

constitutes an axon and the region between the contours I (i)

and O(i), given by AO(i) − AI (i), constitutes the myelin
sheath S(i). The thickness T (i) of the sheath S(i) is given
by the average of the closest distances of every inner contour
point to the outer contour. This is illustrated in Fig. 3.

We compute isocontours progressively at different inten-
sity levels moving from lower to higher intensities. A sheath
S(i) detected at intensity level i signifies a valid structure if
it obeys the rules described below. These rules are framed
based on our observations of the structure of the axon and
its surrounding myelin sheath in the images.

1. Boundary Coupling: There exists a one-to-one and onto
relationship between the inner and outer boundaries of a
sheath structure S(i). This maintains the invariance that
every inner boundary has a corresponding unique outer
boundary and vice-versa.

1Note that although the analysis of evolving topology and its events is
also the basis of Morse theory [26], its application is limited in the con-
text of medical image processing due to the complexity of the image
content [15].
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Fig. 3 (a) This schematic illustrates the axon and sheath structures in
the image. (b) This illustrates the redundant sheath structures. The two
redundant sheath structures are shown with red inner (dotted line) and
outer (solid line) boundaries. The sheath structure shown in yellow with
blue boundaries is the one detected at the lowest intensity, and hence it
is retained as the nonredundant sheath structure

Fig. 4 This schematic shows all the invalid axons. Left: invalid axons
due to self-intersecting boundary or intersecting inner and outer bound-
ary; middle: invalid axon due to axon-within-axon structure; right: in-
valid axon due to local discontinuity in sheath thickness

2. Nonredundant Sheath Structure: Since the myelin sheath
is always darker than both the interior and exterior of
the axon, the thickness of the sheath detected at the in-
tensity level i will be less than that of the sheath de-
tected for the same axon at a higher intensity level. Let
S(i) = AO(i) − AI (i) and S(j) = AO(j) − AI (j) be
the sheaths at intensity levels i and j , i < j (Fig. 3b).
If AI (j) ⊂ AI (i) ⊂ AO(i) ⊂ AO(j), then T (i) < T (j).
In this case, both S(i) and S(j) represent the sheath of
the same axon in the image detected at different inten-
sity levels. In order to avoid double counting of axons,
only one of them is retained and the other one is rejected.
We retain the sheath detected at the lowest intensity level
in order to have a standardized reference to compare the
sheath thickness across different axons in the same image
for subsequent classification. We call this sheath struc-
ture S(i) at the lowest intensity i as the non-redundant
sheath structure.

3. Valid Sheath Structure: There are three rules of a valid
axon structure. First, no axon can be inside another axon.
Second, the inner and outer boundaries, I (i) and O(i),
should not be self-intersecting or intersect with each
other. Finally, the thickness T defined by the distance be-
tween I (i) and O(i) should be locally uniform across the

Fig. 5 Progressive Isocontouring on Real Data: isocontours of the im-
age at three different intensity levels. The top row shows the isocon-
tours at each intensity level, and the bottom row shows the identifica-
tion of axon structures (shown in blue). The isocontours (d) have multi-
ple components and as intensity level increases progressively, complete
axon structures are formed (b), and valid axon structures get morphed
and merged at still higher intensity levels (c, f). When complete axon
structures are detected at a particular intensity level, its geometry is
preserved (d–f), and hence it is not affected by the subsequent morph-
ing of the isocontours

entire boundary. Hence, the change in thickness, if exist-
ing, should be smooth.

We detect isocontours using standard isocontour algo-
rithms. A contour is a closed polyline connecting a sequence
of vertices. Next, we perform a contour within contour test
to decipher the inner and outer boundary contours. A con-
tour I is within another contour O if all vertices of I are
inside O . A vertex v is inside a closed contour O , if a ray
shot from v to an arbitrary point well outside the bound-
ing box of O intersects O an odd number of times. Hence,
the vertex-inside-a-closed-contour test needs a line-polygon
intersection test. If a contour I lies inside another contour
O , we identify I to be an inner boundary and O to be its
corresponding outer boundary. We perform progressive iso-
contouring without violating the redundant sheath structures
criterion by retaining the structure that is detected the earli-
est, as shown in Fig. 5 on a typical situation. Note that there
can be multiple inner boundaries associated with a single
outer boundary violating the boundary coupling criterion as
shown in Fig. 5c. These are handled in the contour sepa-
ration step, as explained in Sect. 4. Further, there can also
be multiple outer boundaries associated with a single in-
ner boundary violating the valid sheath structure criterion.
These are handled in the noise removal step, as explained in
Sect. 5.

The isocontours at specific intensity levels show the re-
gions of the axon in different topologies: the axon bound-
aries might have multiple components (Fig. 5a) or multi-
ple axons might be merged into a single axon boundary
(Fig. 5c). On the other hand, an analysis of the change in
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topology of the axon boundaries over the isocontours of
smoothly varying intensity levels provides a wealth of infor-
mation for identifying the sheath structures accurately. This
is the key observation behind the progressive isocontouring
method. We compute the curves with the same brightness
(isocontours) in the image repeatedly for progressively in-
creasing intensity values (Fig. 5). When the topology of the
isocontour changes over subsequent higher intensity levels,
we analyze it to detect the formation of new sheath struc-
tures (two closed curves one containing the other). These
sheaths identified at a specific intensity level (blue curves
in Fig. 5d–f), would be enclosed by the isocontours in the
subsequent intensity level images (red curves in Fig. 5).
These containments are detected and only the blue isocon-
tours (with smaller sheath thickness) are retained as a non-
redundant sheath structure.

4 Contour separation

After the first step of the pipeline, we get nonredundant
sheaths, but they may not satisfy the boundary coupling cri-

Fig. 6 (a) Contour dilation process on Real Data. (b–d). Problems
with dilation based axon-separation. (b) The outer contour merges,
even as the outer contour of one of the two sheaths has not been de-
tected. (c) One of the inner contours that does not have a correspond-
ing outer contour is dilated to the minimum distance between itself and
the merged outer contour. Note the thickness is much smaller than the
reasonably correct shape given by the red contour. Such problems will
skew the G-ratio of this axon, and hence its classification. (d) Our De-
launay based separation algorithm computes the correct sheath shape

terion. There can be detected outer boundary contours that
enclose multiple smaller inner boundary contours. This is
due to the fact that any pathology being imaged by the mi-
croscope, though very thin, still has a nonzero thickness.
Each cell seen in the image will have a slightly different
depth than the others. Though their mobility is restricted,
they can sometimes occlude parts of other cells merging vis-
ible outer boundaries.

Figure 7a illustrates the typical scenario of merged con-
tours where the outer boundary of multiple myelin sheath
structures are merged. This step of our algorithm divides the
outer boundary into required numbers of closed curves to
match with each enclosed inner boundary (Fig. 7d). One
simpler and obvious solution to separate the contours is
by dilating the inner contour along the normal direction
by the minimum distance to the outer contour enclosing
it (Fig. 6a). Although this method works reasonably well
in many cases, it is not robust and is susceptible to noise
(cellular debris) in the image. It may lead to sheath struc-
tures with inaccurate thicknesses and hence inaccurate G-
ratio value and eventual misclassification of the OR-axons
(Fig. 6c).

To avoid these problems, we propose a robust Delaunay
triangulation based contour separation algorithm. A trian-
gulation of a point set is Delaunay if no point is inside the
circumcircle of any triangle of the triangulation. Hence, a
point is always connected to its closest point in Delaunay
triangulation. Before detailing the algorithm, let us consider
a sheath whose inner and outer boundaries, I and O are
detected and coupled correctly. Let us consider a Delau-
nay triangulation of the vertices in the two boundaries, i.e.,
I ∪O . Let us retain only those edges from this triangulation
that connect a point in the inner boundary to a point in the
outer boundary. This retained set of edges corresponds to the
sheath S in which all edges have lengths close to the thick-
ness of the sheath (Fig. 7). Further, we also notice empiri-
cally that all vertices in the outer contour are connected to
at least one inner contour vertex. We use these observations

Fig. 7 Contour separation algorithm on Real Data: (a) The pink outer
boundary encloses multiple blue inner boundaries violating the bound-
ary coupling criterion. (b) The Delaunay triangulation of the vertices
on inner and outer boundary contours. (c) The edges of the triangu-
lation that connect any inner boundary vertex to an outer boundary
vertex are retained. (d) The edges incident on each inner boundary

that are statistical outliers with respect to edge length are shortened to
match the average edge length of these edges. (e) The closed loop of
vertices thus formed by the farther ends of the edges incident on each
boundary forms the corresponding outer boundary thus separating the
merged outer boundary contour
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Fig. 8 This figure illustrates the local discontinuities in edge length in
an invalid sheath when compared to a valid sheath in real data. (a) and
(b) show a valid and an invalid sheath, respectively. (c) shows the plot

of the sheath thickness as we move along the contour of the valid and
invalid sheath. The valid sheath shows a locally smooth plot while the
bad cell shows severe local discontinuities

to handle situations where there are multiple inner contours
within a single outer contour (Fig. 7a).

The contour separation method takes as input N , N > 1,
inner contours, denoted by Ik , 1 ≤ k ≤ N and their single
outer contour O . The output is N closed outer contours, Ok

one corresponding to each inner contour Ik , carved out of O .
The basic observation is that around each inner contour Ik ,
the outer contour O is well formed except in areas of con-
cavities in O (Fig. 7a). For this, we first perform a Delau-
nay triangulation of all the points in Ik , 1 ≤ k ≤ N , and O

(Fig. 7b). Next, we retain the edges connecting the inner
boundary vertices to the outer boundary vertices (Fig. 7c).
Note that the Delaunay edges in the concavities of O con-
nect two outer boundary vertices and are hence removed.

As discussed earlier, in an ideal cell with coupled inner
and outer boundary contours, the retained Delaunay edges
incident on the inner boundary vertices are all of similar
lengths. So, we find the edges incident on each Ik that are
statistical outliers in terms of their length. These are usu-
ally the edges which couple an inner boundary vertex to
an incorrect vertex in the outer boundary or a different in-
ner boundary. If an outer boundary vertex po is connected
only by these retained Delaunay edges that are statistical
outliers then each of these edges connected to po is short-
ened away from po to the average length of all the other
nonoutlier edges incident on Ik (Fig. 7d). The outer bound-
ary Ok is now formed by connecting the farther end points
of the edges incident on Ik in order (Fig. 7e).

This Delaunay based contour separation method is ex-
tremely robust. This algorithm is also provably correct as it
retains only those Delaunay triangles whose circumcenter is
close to the medial axis [2] formed by the coupled inner–
outer contour pair points, thus establishing the one-to-one
and onto correspondence between the inner and outer con-
tours as prescribed by the boundary coupling criteria for the

definition of a sheath structure. Further, the lengths of the
edges retained in this Delaunay triangulation provide a very
good estimate of sheath thickness which is later used in our
G-ratio computation and classification (Sect. 6).

5 Noise removal

Following the contour separation step, we get nonredundant
boundary coupled sheath structures, but we still have many
invalid sheath structures detected due to cellular debris. In
this step, we identify such cellular debris and remove them.
After the removal of cellular debris, the remaining cell struc-
tures satisfy all the rules of a valid axon structure described
in Sect. 3.

Sheath structures that have self-intersecting boundaries
and intersecting inner and outer boundaries can be identi-
fied using simple line-polygon intersection algorithms and
removed. The invalidity due to axon-within-axon (Fig. 4)
is detected using the same contour within contour test as
used to differentiate inner boundaries from outer boundaries
in Sect. 3. Note that axon-within-axon noise structures are
different from structures that require axon separation. The
former structure has multiple axons (with both inner and
outer contours) inside another axon (again with both inner
and outer contours), while the latter has multiple inner con-
tours inside a single outer contour.

The last case of invalid sheath structure is one with
locally nonuniform sheath thickness. This is detected us-
ing an algorithm similar to the one proposed for contour-
separation. We retain the Delaunay edges of the vertices in
the inner (I ) and outer (O) contours. The lengths of these
edges in sequence should be locally smooth for valid sheath
while invalid sheath structures would have severe local dis-
continuity. We demonstrate the invalid sheath structure us-
ing a typical example showing a valid and invalid structure
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Fig. 9 K-means clustering algorithm for Axon Classification: The
Y -axis shows the G-ratio of the axons. The X-axis is the intensity level
at which specific axons were detected using the progressive isocontour
process. The green points represent the OR-axons (true positives), the
magenta, red and black points represent the false positives, false neg-
atives, and true negatives, respectively. The data is accumulated over
many microscopic images spanning different staining intensities, and
with different numbers of axons

in Fig. 8. It can be clearly seen from a typical example in
Fig. 8c that the variance in the edge lengths of the valid and
invalid sheaths are clearly different and can be used to dis-
tinguish one from the other.

6 OR-axon classification and visualization

The identification and classification of oligidendrocyte-
remyelinated axons are done based on a parameter called
G-ratio. The G-ratio is defined as the ratio of the sheath
thickness to the axon diameter. To find the sheath thickness,
we perform the Delaunay triangulation of its inner and outer
boundary vertices and retain only the edges that connect the
inner boundary vertices to the outer boundary vertices. The
mean length of these retained edges approximates the sheath
thickness. The axon diameter is computed as the largest
distance between any two points in the inner boundary I .
There are three kinds of myelinated axons: (a) normally
myelinated axons are those that were not affected during
the spinal cord injury, (b) the axons that were remyelinated
by the Schwann cells, and (c) the axons that were remyeli-
nated by the oligodendrocyte cells that were injected in the
course of therapy. Our goal is to detect and count the OR-
axons in order to monitor the progress of oligodendrocyte
based remyelination which is a critical step in estimating
the efficacy of the therapy. Oligodendrocyte remyelinated
axons are characterized by lower G-ratios than the normally
or Schwann remyelinated axons. Hence, to classify these

therapeutically important axons we perform k-means clus-
tering of the G-ratios with number of clusters set to two.
The axons corresponding to the cluster with lower G-ratio
are the OR-axons.

Since typically during manual counting, it is prohibitively
tedious to measure G-ratios for all the detected sheaths, the
conventional way to identify an OR-axon is by the lighter
intensity of its myelin sheath when compared to the darker,
more compact, Schwann cell-remyelinated axons [14, 36].
Since we can accurately measure G-ratio automatically, we
use this for clustering the OR-axons. However, we make
an interesting observation from this classification. While it
is true that all cells with lighter intensity sheaths are OR-
axons, the converse is not true—not all OR-axons have
lighter intensity sheaths. Hence, intensity based manual
classification is prone to errors. Further, the intensity levels
at which the axons are detected change based on the stain-
ing process before the microscopic images are taken. This
makes intensity based manual classification subjective. Our
automated G-ratio based classification thus reduces classifi-
cation errors significantly.

The results of this clustering method for several images
are shown in Fig. 9. In this figure, we plot the G-ratio of
the axons (Y -axis) against the intensity levels (X-axis) of
the progressive isocontouring algorithm at which the axon
was detected. The image shows the plot of cells in over 15
images with variable staining intensity and different number
of recognizable cells. Aggregated statistics from all these
images are the following: all the cells recognized at an in-
tensity level above 130 are oligodendrocyte remyelinated
axons—so are all the cells with G-ratio below 0.2. Further,
all the cells with G-ratio above 0.35 are nonoligodendro-
cyte myelinated axons. The region of confusion is in the
rectangular range of intensity less than 130 and the G-ratio
between 0.2 and 0.35. The blue points in the figure denote
the OR-axons and the black points mark all other cells. The
false positives and false negatives are shown in magenta and
red, respectively. Further analysis of these results is given in
Sect. 7.

6.1 Density map generation

To evaluate the effectiveness of the remyelination therapy
it is important to identify the regions of the image where
large clusters of high density OR-axons occur. The size and
density of these clusters indicate the rate of progress and the
location indicates the appropriateness of the targeted cite of
the therapy.

To facilitate this process, we calculate a density map as
follows: the centroids of all the detected OR-axons are iden-
tified, and for each pixel in the image, the average distance to
its k nearest centroids are calculated. Color coding of these
values gives the density image that visually represents the
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Fig. 10 (a), (e) Images show the manual count of OR-axons repre-
sented using red markers. (b), (f) Automatic count of oligodendrocyte-
remyelinated axons on the same images, using the algorithm presented
in this paper. (c), (g) Visualization of the cluster density map of the
manual counts. (d), (h) Density map of the automated counts. Density

images (c), (d), and (g), (h) should be similar if the actual and the man-
ual counts closely match. Using image similarity measure SSIM [38],
we show that the two pair of density images are indeed very similar
(SSIM = 0.982, 0.993)

relative concentration of the detected cells. Lower values
indicate higher concentration of OR-axons and vice versa.
Hence, cooler colors (blue) indicate the cites of remyelina-
tion due to oligodendrocytes and warmer colors (yellow and
red) indicate lack thereof. Figure 10 shows the density maps
thus calculated for the corresponding input images shown in
the same figure.

7 Results and analysis

We used Sprague Dawley female adult rats with 200 Kilo-
Dyne force spinal cord contusion injury. All tissues were
fixed and processed as described in [36]. The images of
these tissues were used as input to our system. The im-
plementation of the algorithm was prototyped using MAT-
LAB and the images used had different intensities. The
shapes and scales of the cells also varied across images.
The remyelination analysis that we automated was also
carried on manually by experts without the knowledge of
the results of the automated process. The experts were
also consulted to review the results of the automated pro-
cess.

Figure 11 shows a sample result of our automatic classifi-
cation with false negatives denoted by red and false positives
by magenta. A typical false detection is shown in Fig. 12.
Sample classification results with manual count and auto-
matic counts are demonstrated in Figs. 13 and 14. The left
column of the figures denote the greyscale images with man-
ual counts marked with red and the right column denotes the
results from our automatic classification with the detected
cells marked in green. Figure 14 demonstrates that our tech-
nique works for images with dense clusters of OR-axons as
well as sparse clusters.

Additional results of the manual and automatic counts
are shown in Table 1. Although manual counting by ex-
perts suffers from classification error due to the subjective
nature of the task, all the statistics and analysis has been
done assuming that the expert counting for the first time
(before seeing the results of the automated process) is the
ground truth (Column 1 of Table 1). The same images were
then processed using our method and the automatic count
of OR-axons were reported in Table 1. Correctly classified
OR-axons were considered to be true positives (denoted by
green in Fig. 9), and the cells that are chosen by the system
but not by the experts are false positive (denoted by magenta
in Fig. 9).



1064 K. Das et al.

Fig. 11 (a) Manual classification. (b) Automatic classification: False
positives are shown in magenta, false negatives in red, and true posi-
tives with green markers as compared to image (a). (c) shows the k-
mean classification of the cells. Note that the false negatives are in the

boundary of true positives and true negatives, and hence are difficult
to automatically label them correctly using only G-ratio and intensity
classifiers

Table 1 Empirical performance evaluation using domain expert’s
count as ground truth: OR-axons detected by our algorithm closely
match the ground truth, demonstrated by the high hit rate

Actual count of
axons

Automated count
of axons

Hit rate Excess rate

68 65 94.12 1.4

78 80 92.31 10.2

96 100 91.67 12.5

35 38 94.29 14.28

25 30 96 24

Traditionally, the success of an automated method is de-
fined by the hit rate given by

hit rate = Number of true positives

Manual count of OR axons
. (1)

This is usually accompanied by a false alarm rate given by

false alarm rate = Number of false positives

Manual count of non-OR axons
. (2)

However, since the non-OR axons are of no importance in
the context of remyelination, manual count for non-OR cells
are not available for us to calculate false alarm rate. Hence,
we define a new term called excess rate as

excess rate = Number of false positives

Manual count of OR axons
. (3)

A high hit rate signifies effective classification of OR ax-
ons while a low excess rate signifies effective rejection of
non-OR axons. Hence, the hit rate together with the excess
rate provides an important indicator for the accuracy of the
automated remyelination analysis. A high hit-rate (>90%)
accompanied by a low excess rate (<25%) signifies a suc-
cessful automated analysis.

Fig. 12 False detection: (a) shows the original image, (b) the man-
ual classification and (c) automatic classification. A typical falsely
detected cell occurs when the algorithm combines neighboring cell
boundaries

The false positives (shown in magenta in Fig. 9) either
have high intensity or have very low G-ratio values indi-
cating that they are indeed within the statistical range of
correct OR-axons. Interestingly, on showing the results of
the automatic cell detection, the experts concurred that over
95% of false positives (cells chosen by us but not the ex-
perts) were actually true positives. These true positives were
missed due to several human factors like subjectivity and
fatigue. This demonstrates the need for automated analy-
sis and also validates a higher accuracy for our automated
analysis by increasing the hit rates and reducing the excess
rates.

On rare occasions, our algorithm falsely detects noncell
structures examples of one such false positive is shown in
Fig. 12. Our automated technique identifies the region en-
closed by the boundaries of the neighboring cells as an in-
dependent cell as seen in Fig. 12. In such occasions, this
contributes to inaccurate computation of false positives.

On the other hand, the false negatives (shown in red)
which determines the miss rate (i.e., 1-hit rate), in Fig. 9, is
in the boundary of true positives (shown in green) and true
negatives (shown in black), and hence are difficult to auto-
matically label them correctly using only G-ratio and inten-
sity. A similar pattern is observed when considering single
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Fig. 13 Classification results: left: stained images showing manual
classification by domain experts; right: gray images showing classi-
fication using our automated method. The caption shows the number

of OR-axons classified manually and automatically. Note that the do-
main experts nor the automated algorithm were aware of each others
classification results. Please zoom in to see results

images, as shown in Fig. 11. A couple of false negative cells
are due to partial cell structures in the image and their cell
boundaries are not closed contours. Hence, our cell identi-
fication algorithms failed to detect cells with such incom-

plete information. Interestingly, classification of the false
negatives was also subjective among human experts and the
misclassification by the automated system is well within the
variance experienced in human counting.
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Fig. 14 Additional classification results: left: stained images show-
ing manual classification by domain experts; right: gray images show-
ing classification using our automated method. The caption shows the

number of OR-axons classified manually and automatically. Note that
the domain experts nor the automated algorithm were aware of each
others classification results. Please zoom in to see results

The most important validation of the success of the auto-
mated analysis would be in comparing a density map gener-
ated from the clusters created by the automated process with
the one that is created from the clusters marked by the man-
ual process since this is the visualization that is ultimately
used for detecting the growth and site of remyelination. Fig-
ure 10 shows examples of density images for both manual
counts and automatic counts for two sample images. The
number of k nearest neighbors was fixed at 1/4th of the
number of cells in the manual count. Blue regions in the den-
sity images denote areas having higher density of detected
cells (Figs. 10c, 10d, and 10g, 10h). Note that Figs. 10e, f
contain OR-axons which are quite different in shape from
the other OR-axons shown in the paper. Our algorithm is
quite efficient in detecting these cells demonstrating that our
technique is indeed shape-independent.

In order to quantify the image similarity between the den-
sity images from the manual and automated counts, we use a

well established image similarity measure, Structural SIM-
ilarity (SSIM) index [38]. SSIM is an objective method for
assessing perceptual image quality using structural similar-
ity between images. The mean SSIM index value of 1.0 be-
tween two images denotes two identical images. For the im-
ages shown in Fig. 10, the mean SSIM index values between
the density images corresponding to manual and automated
counts is 0.982 and 0.993, respectively. The mean SSIM in-
dex for all the images reported in Table 1 is 0.97 (±0.02).
Thus, the method not only counts the desired cells with high
degree of accuracy, but also identifies, classifies, and labels
individual axons with very high confidence.

8 Conclusion and future work

We have presented an end-to-end process for accurate anal-
ysis and visualization of the clusters of OR-axons critical
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to evaluate the progress of remyelination therapy. Our au-
tomated cell classification always correctly identifies the re-
gion populated by the OR-axons, and closely matches the
manual classification. Furthermore, the automated identifi-
cation has a natural advantage of objectively classifying the
axons. This automated remyelination analysis and visualiza-
tion has also injected a lot of excitement among our neurobi-
ologist collaborators. This project will relieve them of sev-
eral weeks of a pain-staking, repetitive, and mundane task
that consumes several hours of trained manpower. By virtue
of its accuracy in detection and classification of axons, we
hope this method will find widespread applicability [25],
thus reducing the turnaround time of the neurobiology re-
search.

Our current application classifies cells as OR-axons and
other cells. In the future, we plan to extend our application to
classify cells into three categories: OR-axons, normally re-
myelinated axons, and Schwann cells. Visualizing the three
different types of myelination after the spinal cord injury
will aid the biologists in analyzing the effect of demyeli-
nation and remyelination, both natural and therapeutic, at
the site of injury in a detailed manner. We are regularly in-
teracting with our neurobiologist collaborators to improve
our algorithm further to aid them in analyzing the efficacy
of the remyelination therapy. One possible option is to pro-
vide an interactive version of our application whereby the
user can have the option of accepting the results of auto-
matic classification or they can vary the threshold of the
g-ratio to further improve the cell classifications. An alter-
native semi-automatic version of our algorithm could also
provide the user the option to select a few sample axons
belonging to each category, and the final classification is
based on the sample cells they select. Currently, the code
is prototyped in Matlab, and in the future we plan to de-
velop a complete package which can be used as a plug-in
with the microscope. Thus, the neurobiologists will have
an united platform whereby they can visualize the remyeli-
nated axons along with the microscopic images and track
such visualizations of images periodically from the date of
injury.

Though specific in application, there are several compo-
nents of the algorithm that are generic and can be applied in
different types of medical image analysis and visualization.
The progressive isocontouring algorithm is a simple and
generic image processing technique that can detect closed
shapes in general stained microscopic images. In addition,
this method also detects event points when the shape topol-
ogy changes. Any application specific to the post-processing
method can process just these events to detect the required
cells. Our Delaunay triangulation based geometric process-
ing contour separation and noise removal methods might
evoke great interest in the newly developing biogeometry
community.
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